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Abstract: The increasing integration of machine learning (ML), particularly reinforcement learning 
(RL), into healthcare has generated significant interest in developing data-driven treatment strategies. 
However, reliable evaluation of RL policies using retrospective clinical data remains a fundamental 
challenge, given issues such as data sparsity, high variance in off-policy estimates, and potential biases 
arising from confounding variables. This study proposes a robust methodological framework for 
evaluating RL algorithms in observational health settings, with a specific focus on sepsis management 
using the MIMIC-III database. The framework integrates advanced statistical estimators, including 
weighted doubly robust (WDR) methods, and incorporates empirical diagnostics such as importance 
weight distribution analyses and effective sample size calculations. We systematically compare the RL-
derived optimal policy against clinician, random, and no-action baselines over 50 randomized train-test 
splits. Quantitative results demonstrate that while the RL policy achieves higher average cumulative 
reward estimates, the performance gains are accompanied by substantial variance and limited data 
support, raising important considerations about the interpretability and generalizability of such models. 
By explicitly addressing the methodological gaps present in prior works, this research offers a 
transparent, reproducible, and clinically grounded approach to RL policy evaluation. The findings 
highlight the necessity of combining algorithmic innovation with rigorous evaluation practices and 
domain expertise to ensure safe and effective translation of RL systems into real-world clinical 
workflows. This study contributes both methodological advancements and practical recommendations 
that can inform future development and validation of machine learning applications in healthcare. 

Keywords: Reinforcement learning; off-policy evaluation; healthcare decision support; sepsis 
management; importance sampling; doubly robust estimators; observational data analysis; machine 
learning in healthcare 

1. Introduction 
The increasing availability of large-scale observational healthcare datasets has fueled 

interest in applying machine learning (ML), particularly reinforcement learning (RL), to 
optimize treatment strategies and improve patient outcomes. RL focuses on learning optimal 
sequences of decisions to maximize cumulative long-term rewards, making it a promising tool 
for managing complex, time-dependent medical conditions such as sepsis, mechanical 
ventilation, and chronic disease treatment [1]–[3]. However, rigorous evaluation of RL-based 
treatment policies in healthcare remains a critical challenge, especially when working solely 
with retrospective data where experimentation on patients is not ethically feasible. 

Prior studies have employed several methods for off-policy evaluation, including 
importance sampling (IS) [4], doubly robust estimators [5], and model-based simulations [6]. 
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While these methods provide mathematical frameworks for estimating the value of proposed 
policies using historical data, they are often limited by high variance, data sparsity, bias, or 
unrealistic assumptions about the underlying clinical environment. For example, IS methods 
suffer from high variance when the evaluation policy differs significantly from the clinician’s 
observed policy, while model-based approaches risk optimistic bias if the learned model fails 
to capture clinical nuances [4], [6]. Additionally, ad hoc evaluation metrics, such as U-curve 
analyses comparing outcome trends across treatment discrepancies, may introduce spurious 
correlations driven by confounding factors [7]. These weaknesses highlight the need for more 
robust, interpretable, and clinically grounded evaluation strategies. 

This research addresses the fundamental problem of how to reliably evaluate 
reinforcement learning algorithms in observational health settings. We propose a conceptual 
framework that identifies critical pitfalls in existing evaluation approaches and offers practical 
recommendations to mitigate these issues. Unlike prior works that primarily focus on 
algorithmic advancements, we emphasize the importance of representation choices, variance 
control, effective sample sizes, and clinician-guided interpretability in ensuring reliable policy 
evaluation. By systematically analyzing empirical case studies drawn from sepsis management 
using the MIMIC-III database [8], we illustrate how data artifacts, model assumptions, and 
methodological limitations can lead to misleading conclusions if not carefully accounted for. 

The main contributions of this paper are as follows: 
• We provide a structured analysis of key challenges in applying RL algorithms to 

retrospective healthcare datasets, focusing on issues of representation learning, 
confounding, and off-policy evaluation. 

• We empirically demonstrate, through detailed experiments on sepsis management, how 
standard RL evaluation methods may fail or introduce bias under realistic clinical data 
constraints. 

• We offer actionable recommendations, grounded in both machine learning theory and 
clinical practice, to guide researchers toward safer and more reliable evaluation practices. 

• We highlight the need for interdisciplinary collaboration, emphasizing that algorithmic 
rigor must be complemented by domain expertise to achieve meaningful improvements 
in healthcare delivery. 
The remainder of this paper is organized as follows. Section II reviews related work on 

RL applications in healthcare and existing evaluation techniques. Section III describes the 
dataset, problem formalization, and experimental setup. Section IV presents empirical results 
and diagnostic analyses. Section V discusses limitations and implications for future research. 
Finally, Section VI concludes the paper by summarizing our key findings and 
recommendations. 

2. Related Work 
This section provides an overview of recent advancements related to reinforcement 

learning (RL) applications in healthcare and the methodological approaches developed for 
evaluating RL policies using observational data. By identifying the key gaps and differences 
between prior works and the present study, we clarify the unique contributions of this 
research. 

2.1. Reinforcement Learning in Healthcare 
Reinforcement learning has been increasingly explored as a promising approach to 

optimize sequential decision-making in healthcare, where clinical decisions unfold over time 
and influence long-term patient outcomes. Several notable works have applied RL to high-
stakes clinical scenarios. Prasad et al. [1] proposed an RL framework to assist in the weaning 
process of mechanical ventilation in intensive care units (ICUs), addressing the challenge of 
determining when to transition patients off ventilatory support. Raghu et al. [2] introduced 
deep RL models for sepsis management, showing that data-driven policies could potentially 
outperform heuristic-based clinician policies in terms of predicted survival outcomes. 
Similarly, Shortreed et al. [3] applied RL methods to psychiatric care, specifically optimizing 
treatment strategies for patients with schizophrenia. 

Despite these advances, the application of RL in healthcare presents several unique 
challenges. Unlike games or simulated environments, clinical settings are constrained by 
ethical concerns, data limitations, and confounding factors, making it difficult to directly 
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implement and test learned policies on real patients. Furthermore, the complexity of patient 
physiology, heterogeneity in treatment responses, and delayed outcomes (e.g., mortality 
observed days or weeks after intervention) exacerbate the difficulty of applying RL effectively 
[4], [5]. These challenges underscore the importance of rigorous off-policy evaluation 
techniques before considering RL deployment in clinical workflows. 

2.2. Evaluation Methods for RL Algorithms 
Off-policy evaluation (OPE) aims to estimate the value of a new policy using historical 

data generated by a different behavior policy (e.g., physician decisions). A prominent class of 
OPE methods relies on importance sampling (IS), which reweights historical trajectories 
based on the likelihood of actions under the new policy compared to the behavior policy [6]. 
While IS provides unbiased estimators in theory, its practical performance often suffers due 
to high variance, especially when the evaluation policy differs significantly from the observed 
data [7]. To address this, weighted IS methods, such as weighted per-decision IS (WPDIS), 
have been proposed to reduce variance at the cost of introducing bias [6]. 

Another major advancement in OPE is the development of doubly robust (DR) 
estimators, which combine direct modeling of outcomes with IS corrections to achieve more 
stable value estimates [8]. However, DR methods depend on the accuracy of the outcome 
models, which can be challenging to construct in high-dimensional and sparse clinical 
datasets. Recent works by Jiang and Li [8] and Thomas and Brunskill [9] have introduced 
weighted doubly robust (WDR) estimators that further balance bias-variance tradeoffs, yet 
even these advanced estimators struggle in deterministic policy evaluations with long 
horizons. 

In addition to statistical estimators, some studies have turned to simpler, more 
interpretable but less formal evaluation approaches. Raghu et al. [2] and Prasad et al. [1], for 
example, use U-curve analyses that correlate outcome metrics (e.g., mortality) with the 
deviation between the clinician’s action and the RL-recommended action. While such 
methods can highlight intuitive trends, they are susceptible to confounding artifacts and fail 
to provide rigorous causal evidence [10]. These limitations highlight a critical research gap: 
existing evaluation methods often fail to deliver robust, low-variance, interpretable 
assessments of RL policies in healthcare settings, especially when working with observational 
data alone. 

2.3. Gaps and Contribution 
Compared to prior works, the present research provides a systematic examination of the 

pitfalls associated with both formal and ad hoc evaluation methods for RL in healthcare. 
While most existing studies focus on improving algorithms or demonstrating performance 
gains, this study emphasizes diagnosing evaluation weaknesses and offering practical, domain-
grounded recommendations for improving evaluation practices. By focusing on sepsis 
management as a case study, the paper bridges the methodological and clinical domains, 
aiming to improve not only computational rigor but also clinical relevance. 

3. Proposed Method 
This section describes the proposed methodological framework for evaluating 

reinforcement learning (RL) algorithms in healthcare, detailing each component from data 
preparation to model assessment. The goal is to ensure robust, reproducible, and clinically 
meaningful evaluation. 

3.1. Overall Framework 
Our approach integrates: 

1. State Representation: Summarizing patient histories into structured states; 
2. Action Space Definition: Discretizing treatments into finite decision categories; 
3. Reward Specification: Defining clinically aligned outcome signals; 
4. Model Development: Training RL models to optimize cumulative reward; 
5. Model Evaluation: Rigorously assessing both the learned policy and the underlying 

predictive models. 
 

Algorithm 1. Off-Policy Evaluation Framework for RL in Healthcare 
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INPUT: Dataset 𝑫, behavior policy 𝝅𝒃, candidate RL policy 𝝅𝒆, reward function 𝒓 
OUTPUT: Policy value estimate 𝑉 	𝝅𝒆 , model performance metrics 
1: Preprocess 𝑫 into state-action-reward sequences; 
2: Train RL policy 𝝅𝒆, using historical data; 
3: Calculate importance weights 𝒘𝑯 (Eq. 1); 
4: Estimate off-policy value 𝑉 	𝝅𝒆 (Eq. 2); 
5: Evaluate predictive model performance (see Sec. 3.5); 
6: Conduct diagnostic checks and interpretability analysis. 

3.3. State Representation 
Patient history 𝑯 is compressed into state sss using clustering over vital signs and lab 

results, ensuring confounders are included [1]. For example, k-means with K=750 clusters 
represent the continuous space as in Eq. (1). 

𝒔𝒕 	= 	𝒄𝒍𝒖𝒔𝒕𝒆𝒓(𝒙𝒕), (1) 

where 𝒙𝒕 is the observation vector at time 𝒕. 

3.4. Action and Reward Definition 
Actions aaa combine discretized IV fluid and vasopressor bins as follow in Eq. (2). 

𝑨	 = 	 3𝒂𝒊𝒋|𝒊, 𝒋 ∈ [𝟎, 𝟒]=, (2) 

with 𝒊 = 𝐼𝑉 fluid bin and 𝒋 = vasopressor bin. 
The reward at time 𝑻 is as follow in Eq. (3). 

𝒓𝑻 	= 	 >
+𝟏𝟎𝟎, if	survive
−𝟏𝟎𝟎, if	deceased, (3) 

3.5. Model Evaluation 
Beyond evaluating the policy value, we systematically assess model performance: 

• Predictive Accuracy. We use mean squared error (MSE) and area under the receiver 
operating characteristic curve (AUC-ROC) on held-out data to quantify the predictive 
model’s accuracy. 

• Bias-Variance Analysis. We partition the data into multiple training/test splits (e.g., 
80/20) and measure performance variability across splits to identify overfitting. 

• Effective Sample Size (ESS). We calculate as in Eq. (4). 

𝑬𝑺𝑺 = *∑ 𝒘𝒏𝑵
𝒏$𝟏 -

𝟐

∑ 𝒘𝒏𝟐𝑵
𝒏$𝟏

	 , (4) 

to ensure sufficient usable data under the evaluation policy. 
• Baseline Comparisons. We compare 𝝅𝒆 against baseline policies: 

o Clinician policy 𝝅𝒃; 
o Random action policy; 
o No-action policy. 

• Statistical Confidence Intervals: We compute bootstrapped confidence intervals for 𝑉 	𝝅𝒆 . 
These steps ensure that not only the policy but also the underlying model assumptions 

and generalization are validated. 

3.6. Mathematical Formulation 
The estimated policy value is in Eq. (5). 

𝑽𝝅𝒆 = 𝟏
𝑵
∑ 𝒘𝑯𝒏𝑹𝑯𝒏𝑵
𝒏1𝟏 	 , (5) 

with importance weights as in Eq. (6). 

𝒘𝑯𝒏 = ∏ 𝝅𝒆(𝒂𝒕
𝒏|𝒔𝒕

𝒏)
𝝅𝒃*𝒂𝒕𝒏|𝒔𝒕𝒏-

𝑻𝒏
𝒕1𝟎 	 , (6) 

and cumulative reward as in Eq. (7). 



Journal of Machine Intelligence in Healthcare 2025 (April), Vol. 1, No. 1, Caesarizky , et al.  49 of 54 
 

 

𝑹𝑯𝒏 =	∑ 𝜸𝒕𝒓𝒕𝒏𝑻𝒏
𝒕1𝟎  , (7) 

where 𝜸 is the discount factor (e.g., 𝜸=0.95). 
 

4. Results and Discussion 
This section presents the experimental setup, dataset details, initial data analysis, 

quantitative results, and an in-depth discussion of the findings. We aim to evaluate the 
proposed reinforcement learning (RL) framework both in terms of policy performance and 
underlying model robustness, providing insights into its strengths, limitations, and practical 
implications. 

4.1. Experimental Setup 
All experiments were conducted on a workstation equipped with an Intel® Xeon® Silver 

4210 processor, 128 GB RAM, and an NVIDIA® Tesla V100 GPU. The software 
environment included Python 3.8, TensorFlow 2.4, and the RLlib library for reinforcement 
learning implementation. Statistical analyses and plots were generated using the SciPy and 
Matplotlib packages. 

The primary dataset used was the MIMIC-III clinical database [1], which contains de-
identified electronic health records from over 40,000 ICU admissions. We extracted a cohort 
of 19,275 patients who met the Sepsis-3 criteria [2], focusing on decisions around intravenous 
(IV) fluids and vasopressor administration, with time discretized into 4-hour intervals. 
Features included demographics, vital signs, lab tests, administered treatments, and 90-day 
mortality outcomes. 

4.2. Initial Data Analysis and Quantitative Results 
First, we conducted an exploratory data analysis to characterize the patient cohort and 

prepare the dataset for reinforcement learning (RL) policy evaluation. We extracted a total of 
19,275 ICU admissions meeting the Sepsis-3 diagnostic criteria from the MIMIC-III database 
[1], comprising an average patient age of 64.1 years (SD ± 16.7) and a balanced sex 
distribution (48.9% female, 51.1% male). The average Sequential Organ Failure Assessment 
(SOFA) score at admission was 8.3 (SD ± 4.7), and the observed 90-day mortality rate was 
21%. We discretized all time-series data into 4-hour intervals, resulting in an average of 13 
intervals per patient record. 

Next, we examined treatment patterns by analyzing the distribution of intravenous (IV) 
fluid and vasopressor administration over time. Fig. 1 presents the dosage distributions across 
all recorded intervals, showing that the majority of administered treatments clustered at low 
or zero doses, indicating that no-treatment or minimal-intervention strategies dominated 
clinical decisions. 

 

 
Figure 1. Distribution of treatment dosages across time intervals in the sepsis cohort. 
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This figure presents histograms of IV fluid and vasopressor dosages, revealing long-
tailed distributions with most values concentrated at the lower end of the dosage range. 

Subsequently, we evaluated the performance of four distinct policies: the observed 
clinician (behavior) policy ( 𝝅𝒃), a random action policy applying uniformly random 
interventions, a no-action policy that withheld treatments, and the RL-derived optimal policy 
(𝝅𝒆) trained on retrospective data. We applied weighted doubly robust (WDR) estimators to 
assess the off-policy value of each policy, using 50 randomized train-test splits (80% training, 
20% testing) with a discount factor 𝛾=0.95. 

Table 1 summarizes the mean estimated policy values and corresponding effective 
sample sizes (ESS), providing a quantitative overview of policy performance and the 
proportion of the dataset effectively contributing to each evaluation. 

Table 1. Off-policy estimated values and effective sample sizes for different treatment. 

Policy Type Estimated Value (Mean ± SD) Effective Sample Size (ESS) 
Clinician Policy 30.2 ± 5.1 3855 

RL Optimal Policy 35.8 ± 7.4 167 
Random Policy 5.6 ± 12.3 45 

No-Action Policy 10.9 ± 10.1 25 
 
We visualized the variance and distributional properties of policy value estimates across 

the randomized splits using boxplots. Fig. 2 shows the spread and quartiles of estimated 
values for each policy, offering insight into the consistency of the evaluations. 

 

 
Figure 2. Boxplots boxplot of estimated policy values across 50 random data splits. 

This figure displays the distribution of estimated policy values for the clinician, RL 
optimal, random, and no-action policies, calculated over repeated data partitions. 

To assess the underlying data support, we analyzed the distribution of importance 
weights applied during the WDR estimation. Fig. 3 presents a histogram of the importance 
weights across patient trajectories, reflecting the extent to which individual samples 
influenced the final policy evaluations. 
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Figure 3. Histogram of importance weights across patient trajectories. 

This figure illustrates the frequency distribution of importance weights, highlighting the 
relative contribution of each patient sequence to the off-policy evaluation calculations. 

4.4. Discussion 
The results presented in the previous section provide several important insights into the 

performance and limitations of reinforcement learning (RL) algorithms when applied to 
observational healthcare data. First, the RL-derived optimal policy achieved a higher 
estimated cumulative reward compared to the clinician policy, suggesting that data-driven 
strategies may offer potential improvements over standard practice. However, the observed 
performance gains must be carefully interpreted in light of the variability, data support, and 
evaluation constraints identified in this study. 

A key observation is the substantial variance across the 50 randomized train-test splits, 
as shown in Figure 2. Although the RL policy’s mean estimated value exceeded that of the 
clinician baseline, the overlapping interquartile ranges and wide confidence intervals indicate 
that the superiority of the RL policy is not consistently observed across all data partitions. 
This variability reflects the sensitivity of off-policy evaluation estimates to the limited overlap 
between the evaluation policy and the historical data distribution, particularly when 
deterministic policies are assessed using importance sampling techniques. Similar challenges 
have been reported in prior works addressing high-stakes medical applications [3], [4], 
underscoring the importance of robust statistical design. 

The analysis of importance weights, illustrated in Figure 3, further highlights a critical 
methodological limitation. Despite the large overall cohort, only a small subset of patient 
trajectories contributed meaningfully to the evaluation of the RL policy, as indicated by the 
effective sample size (ESS) of 167 compared to 3855 for the clinician policy. This result aligns 
with theoretical expectations that importance sampling weights decay exponentially as policy 
divergence increases [5]. Consequently, the estimated performance gains of the RL policy may 
reflect artifacts arising from sparse data support rather than genuine improvements in clinical 
decision-making. 

Additionally, the predictive validation of the underlying outcome model, yielding an 
AUC-ROC of 0.71, indicates moderate discriminative capacity. While sufficient for 
exploratory modeling, this performance level suggests that the model captures only part of 
the relevant clinical heterogeneity, leaving room for further refinement. Prior research has 
emphasized that both model calibration and interpretability are essential for ensuring the 
practical relevance of ML systems in healthcare [6], [7]. Without transparency in how models 
reach their recommendations, it becomes challenging for clinicians to assess the reliability and 
applicability of suggested treatment strategies. 
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An important consideration in interpreting these findings is the inherent limitation of 
retrospective observational data. Unlike prospective trials, observational datasets lack 
experimental control, making causal inference dependent on the completeness of recorded 
covariates and the validity of modeling assumptions [8]. Although the current study employed 
clustering techniques to summarize patient histories and included key clinical variables such 
as SOFA scores, the possibility of unmeasured confounding remains. As such, even the best-
performing RL policy should be viewed as hypothesis-generating rather than ready for direct 
clinical deployment. 

These results collectively emphasize the importance of combining algorithmic advances 
with methodological rigor and domain expertise. Future research should explore hybrid 
evaluation strategies that integrate off-policy statistical methods with simulation 
environments, prospective validation studies, and expert review to ensure that RL-derived 
policies not only perform well statistically but also align with clinical priorities and safety 
standards. In doing so, the field can move toward developing reinforcement learning systems 
that are both technically robust and clinically trustworthy. 

5. Comparison 
To contextualize the proposed reinforcement learning (RL) evaluation framework, we 

compared our approach against several state-of-the-art methods previously reported in the 
literature. Prior works on RL for healthcare applications have largely focused on improving 
policy optimization algorithms or demonstrating theoretical gains without systematically 
addressing the challenges of evaluation using observational data [1], [2], [4]. 

Specifically, Raghu et al. [2] applied deep reinforcement learning to sepsis management 
using the MIMIC-III dataset, employing model-based value estimation without incorporating 
robust variance reduction techniques such as weighted doubly robust (WDR) estimators. 
While their work reported promising improvements in simulated patient outcomes, it lacked 
a detailed examination of the effective sample sizes supporting the evaluation, a factor we 
explicitly addressed in our study. By contrast, Prasad et al. [1] used reinforcement learning to 
support ventilator weaning decisions, but their evaluation relied on policy simulations without 
systematic importance weight diagnostics or bias-variance analyses. 

In addition, Jiang and Li [5] proposed doubly robust off-policy value evaluation 
methods, which we adopted and extended by combining them with detailed empirical 
diagnostics on effective sample size and importance weight distributions. This extension 
represents a methodological contribution, as we not only applied advanced estimators but 
also systematically quantified their practical limitations in the context of real clinical data. 

Table 2 summarizes the key differences between our approach and comparable state-of-
the-art methods. 

Table 2. Off-policy estimated values and effective sample sizes for different treatment. 

Studies Dataset Evaluation Method Addressed Effective 
Sample Size 

Used Doubly Robust 
Estimators 

Importance Weight 
Diagnostics 

Raghu et al. [2] MIMIC-III Model-based 
simulation 

No No No 

Prasad et al. [1] MIMIC-III Policy simulation No No No 
Jiang & Li [5] Synthetic data Doubly robust 

estimation 
No Yes Partial 

This study MIMIC-III WDR with diagnostics Yes Yes Yes 
 
This comparative analysis illustrates that, unlike prior works, our study integrates both 

advanced statistical estimators and comprehensive diagnostic analyses to provide a more 
rigorous, transparent, and data-aware evaluation of RL policies. By explicitly quantifying 
variance, effective sample sizes, and importance weight distributions, we deliver a clearer, 
more measurable illustration of the strengths and limitations of RL policy performance in 
healthcare settings. 

6. Conclusions 
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This study proposed and evaluated a methodological framework for assessing 
reinforcement learning (RL) algorithms in observational healthcare settings, using sepsis 
management as a case study. The main findings demonstrated that the RL-derived optimal 
policy achieved a higher estimated cumulative reward compared to the clinician baseline when 
evaluated using weighted doubly robust (WDR) estimators. Quantitative analyses showed that 
while performance gains were observed, they were accompanied by substantial variance and 
limited effective sample sizes, highlighting the importance of incorporating diagnostic checks 
and robust evaluation techniques. The study also provided empirical evidence on the 
challenges posed by data sparsity, policy divergence, and the limitations of observational 
datasets for evaluating deterministic policies. 

Synthesizing the findings, we observed a clear alignment between the results and the 
research objectives. The study successfully identified critical weaknesses in standard 
evaluation approaches and offered methodological enhancements through the combined use 
of advanced estimators and effective sample size diagnostics. These findings support the 
initial hypothesis that robust evaluation frameworks are essential for accurately assessing RL 
policy performance, particularly in high-stakes clinical domains where data biases and 
confounding are prevalent. The proposed framework thus contributes to the field by offering 
not only a quantitative performance assessment but also a structured approach to identifying 
methodological risks and ensuring evaluation transparency. 

The implications of this research extend to both the machine learning and healthcare 
communities. For ML researchers, the findings underscore the necessity of combining 
statistical rigor with domain-informed insights to develop trustworthy algorithms. For clinical 
practitioners, the framework provides a foundation for more cautious and evidence-informed 
interpretation of RL-based treatment recommendations. Despite these contributions, the 
study has limitations, including its reliance on retrospective data and the absence of 
prospective or experimental validation. Future research should explore hybrid evaluation 
strategies that integrate off-policy estimators with prospective trials, simulation environments, 
and clinician-in-the-loop testing to further advance the safe and effective application of 
reinforcement learning in healthcare. 
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