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Abstract: Electronic Health Records (EHRs) have emerged as a transformative resource for 
advancing healthcare analytics by enabling large-scale, data-driven discovery of patient 
patterns and comorbidity structures. However, unsupervised machine learning approaches 
such as Latent Dirichlet Allocation (LDA), though widely used to uncover latent disease 
clusters, often struggle with key limitations: they are sensitive to demographic confounding 
and model only raw co-occurrence frequencies, limiting epidemiological interpretability. This 
research addresses these gaps by proposing the Poisson Dirichlet Model (PDM), a novel 
probabilistic framework that integrates demographic-adjusted expected counts and models 
diagnosis frequencies using a Poisson likelihood. The goal is to identify clinically meaningful 
latent disease clusters and stratify patients into risk-based subgroups, overcoming 
demographic biases inherent in prior models. We evaluated PDM against LDA across three 
real-world cohorts (osteoporosis, delirium/dementia, and COPD/bronchiectasis) using 
datasets from the Rochester Epidemiology Project, employing survival analysis, comorbidity 
profiling, and qualitative cluster visualizations. Results demonstrate that while LDA achieves 
stronger statistical separation, PDM reveals more epidemiologically relevant excess-risk 
patterns, providing nuanced insights into latent disease mechanisms beyond age or sex effects. 
Notably, PDM complements the interpretability and transparency often lacking in deep 
learning or network-based approaches, positioning it as a valuable tool for precision public 
health and data-driven patient stratification. We conclude that integrating expected 
demographic-adjusted counts within probabilistic topic models yields substantial 
methodological and clinical advantages, and we recommend future research to extend this 
framework for scalable, multimodal, and longitudinal healthcare data analysis. 

Keywords: Electronic health records (EHR); unsupervised machine learning; poisson 
dirichlet model (PDM); latent dirichlet allocation (LDA); excess risk modeling; patient 
stratification; epidemiological analysis; precision public health 

1. Introduction 
Electronic Health Records (EHRs) have transformed healthcare systems by providing 

rich, longitudinal patient data that support not only clinical practice but also epidemiological 
and computational research [1], [2]. This research focuses on applying unsupervised machine 
learning to uncover latent disease clusters and patient subgroups within EHR data, aiming to 
advance both disease understanding and personalized care. Unlike supervised learning, which 
relies on labeled data [3], unsupervised methods can discover hidden patterns without 
predefined outcomes, offering opportunities to identify unknown comorbidity structures and 
patient risk profiles [4], [5]. 
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Prior studies have employed various machine learning techniques on EHRs, notably 
Latent Dirichlet Allocation (LDA), a generative probabilistic model originally developed for 
text mining [6], [7]. In healthcare, LDA has been adapted to model disease co-occurrence 
patterns by treating diseases as “words” and patients as “documents,” effectively identifying 
latent disease clusters [8], [9]. However, LDA has known limitations, particularly its sensitivity 
to demographic confounders such as age and sex, which can dominate the identified clusters, 
leading to less epidemiologically meaningful patterns [10], [11]. Other unsupervised 
approaches, including neural autoencoders [12], deep representation learning [13], and graph-
based clustering [14], have shown promise but also suffer from challenges such as 
interpretability and scalability on sparse, irregularly sampled clinical data [15]. 

To address these challenges, this paper proposes a novel probabilistic model called the 
Poisson Dirichlet Model (PDM), which extends LDA by incorporating both observed and 
expected disease frequencies, calculated through epidemiological adjustments for age and sex, 
and models diagnosis counts using a Poisson likelihood [16]. This extension aims to capture 
excess risk patterns rather than raw occurrence rates, improving the clinical relevance of 
discovered clusters. The key research problem tackled here is the reliable identification of 
meaningful latent structures in complex, real-world EHR datasets, which are often noisy, 
incomplete, and demographically biased [17]. 

The proposed solution involves applying the PDM framework to large, linked EHR 
cohorts to (1) reveal latent comorbidity clusters that go beyond simple demographic 
stratification, and (2) stratify patients into subgroups with distinct survival risks and clinical 
profiles, offering insights for epidemiology and personalized medicine. Compared to prior 
models, PDM directly adjusts for demographic factors, employs a tailored Poisson-generative 
mechanism, and leverages Metropolis-Hastings sampling for parameter inference, addressing 
several limitations of traditional LDA [18]. 

The main contributions of this paper are: 
● Development of the Poisson Dirichlet Model (PDM), an unsupervised probabilistic 

approach tailored to EHR data, improving on LDA by adjusting for age and sex effects. 
● Comprehensive empirical evaluation of PDM and LDA on three real-world clinical 

cohorts (osteoporosis, delirium/dementia, and COPD/bronchiectasis) sourced from 
the Rochester Epidemiology Project. 

● Visualization and validation of latent disease clusters using both statistical measures and 
biomedical evidence from the literature. 

● Survival and comorbidity analysis to assess the clinical differentiation of patient 
subgroups identified by each method. 

● Discussion of the potential epidemiological and clinical applications of unsupervised 
learning on EHRs and identification of future research directions. 
The rest of this paper is structured as follows. Section 2 discusses related work in 

unsupervised learning for healthcare. Section 3 describes the mathematical foundations and 
inference procedures of LDA and the proposed PDM. Section 4 outlines the experimental 
design, datasets, and evaluation metrics. Section 5 presents the empirical results, including 
visualization, survival, and comorbidity analyses. Section 6 provides a detailed comparison 
and discussion of findings, limitations, and implications. Finally, Section 7 concludes the 
paper and outlines future research directions. 

2. Related Work 
Recent years have witnessed a rapid expansion of machine learning applications in 

healthcare, particularly for mining Electronic Health Records (EHRs), which offer a vast 
resource for clinical insights, risk prediction, and patient stratification [1], [3], [4]. Among the 
dominant approaches, supervised learning has been widely employed for predicting specific 
outcomes, such as disease onset or treatment response, using labeled datasets [5], [6]. 
However, supervised models often struggle with limited generalizability, heavy reliance on 
annotated data, and inability to uncover novel patterns beyond predefined labels [7], [8]. This 
has motivated increasing interest in unsupervised machine learning, which can discover latent 
structures in large, unlabeled clinical datasets. 

One prominent unsupervised approach is Latent Dirichlet Allocation (LDA), originally 
developed for topic modeling in natural language processing [6], [9]. LDA models documents 
as mixtures of topics, with each topic characterized by a distribution over words. In the 
healthcare domain, several studies have adapted LDA to analyze patient records by treating 
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patients as “documents” and diagnoses as “words,” thereby uncovering latent disease clusters 
or comorbidities [8], [10], [11]. For example, Li et al. [12] applied LDA to EHR data to explore 
diagnostic group associations, while Wang et al. [13] used LDA to identify disease progression 
trajectories. Despite its potential, LDA has notable limitations in medical applications: it 
models raw co-occurrence frequencies, making it highly sensitive to demographic variables 
like age and sex, and struggles to separate clinically meaningful excess risk patterns from 
expected background distributions [14], [15]. 

Beyond LDA, deep learning techniques such as autoencoders [12], recurrent neural 
networks [16], and attention-based models [17] have been applied to EHRs for unsupervised 
representation learning. These models can capture complex temporal dependencies and 
hierarchical patterns but often sacrifice interpretability, an essential aspect for clinical 
applications [18]. Additionally, deep models typically require large-scale, high-quality datasets 
and significant computational resources, which may limit their practical deployment in real-
world healthcare settings [19]. 

Graph-based and network medicine approaches represent another important research 
direction, using disease-disease or patient-patient networks to explore associations and predict 
risks [20], [21]. Barabási et al. [22] introduced network medicine frameworks to map disease 
co-occurrence, while Gligorijevic et al. [23] employed graph embeddings to infer disease-gene 
links. These methods provide rich relational insights but often depend on external biological 
interaction databases, which are incomplete and biased, limiting their application to purely 
data-driven EHR analyses [24]. 

To address the specific challenges of demographic confounding and excess risk 
modeling in EHR mining, this paper introduces the Poisson Dirichlet Model (PDM), which 
extends LDA by incorporating epidemiological adjustments for age and sex and modeling 
disease occurrence as a Poisson process [16]. While prior work by Schnell et al. [25] and Ni 
et al. [26] has explored Bayesian subgroup discovery and disease module networks, none have 
integrated expected observation modeling into probabilistic topic frameworks for healthcare 
applications. The proposed PDM thus fills a crucial gap by providing a demographically 
adjusted, interpretable, and scalable unsupervised learning approach tailored to 
epidemiological questions in aging-related disease clusters. 

In summary, while unsupervised learning on EHRs has evolved from basic clustering 
and topic models to sophisticated deep learning and network approaches, significant gaps 
remain in balancing interpretability, demographic correction, and discovery of excess risk 
patterns. The present study addresses these gaps by proposing a novel probabilistic 
framework, empirically validated across multiple disease cohorts. 

3. Proposed Method 
This section details the proposed Poisson Dirichlet Model (PDM), designed to discover 

latent disease clusters and patient subgroups from Electronic Health Records (EHRs). 
Building upon Latent Dirichlet Allocation (LDA) [1], PDM incorporates demographic-
adjusted expected disease counts and models excess risk using a Poisson likelihood, 
improving both epidemiological relevance and interpretability. 

The following subsections present the model assumptions, mathematical formulation, 
inference algorithm, and overall workflow. By combining probabilistic modeling and 
Metropolis-Hastings (MH) sampling [2], the PDM framework addresses key limitations of 
prior approaches, particularly their sensitivity to age and sex confounding in clinical datasets. 

3.1. Overview of the Proposed Framework 
The PDM framework extends conventional LDA [1] in two major ways: 

● It integrates expected disease counts 𝒆𝒎,𝒏 based on population-level age and sex risk 
profiles, similar to methods in excess risk modeling [3], [4]; 

● It replaces the multinomial likelihood for disease counts with a Poisson likelihood, 
enabling more accurate modeling of diagnosis event frequencies [5]. 
These modifications allow PDM to capture deviation from expected demographic 

baselines, a critical aspect in epidemiology, where age and sex driven patterns often 
overshadow clinically meaningful clusters [6]. 

3.2. Mathematical Formulation 
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We define: 
● 𝑫 = {𝒅𝟏, 𝒅𝟐, … , 𝒅𝑽}: set of diagnosis codes (vocabulary size 𝑽); 
● 𝑪 = {𝒘𝟏, 𝒘𝟐, … ,𝒘𝑴}: set of patients (cohort size 𝑴); 
● 𝒘𝒎 = (𝒘𝒎,𝟏, 𝒘𝒎,𝟐, … ,𝒘𝒎,𝑵𝒎 : diagnoses for patient mmm. 

The generative process is as follows. For each latent disease cluster 𝒌 where 𝒌 = 𝟏,… ,𝑲 
as formulation in Eq. (1). 

∅!~Dirichlet(𝛽).	 (1) 

For each patient 𝒎 following formula in Eq. (2). 

∅!~Dirichlet(𝛼),	 (2) 

𝛾"~Gamma(𝜉, 𝛿),	 (3) 

and for each diagnosed disease 𝒏 following formula in Eq. (4) and (5). 

𝒵",$~Multinomial(𝜃"),	 (4) 

𝑦",$~PoissonA𝜃𝒵!,# × 𝑒",$ × 𝛾"D,	 (5) 

where: 
● 𝒆𝒎,𝒏  is the expected count (precomputed from generalized additive models [7], [8]); 
● 𝜸𝒎  adjusts for patient-level overdispersion (e.g., differing healthcare utilization). 

These equations extend the LDA structure [1] by explicitly modeling observed versus 
expected disease occurrences, focusing the clustering on excess risk rather than raw 
prevalence [3]. 

3.3. Inference Algorithm 
Due to the non-conjugacy between Poisson and Dirichlet distributions, standard Gibbs 

sampling used in LDA [9] is not applicable. Instead, we employ Metropolis-Hastings (MH) 
sampling [2], a general Markov Chain Monte Carlo (MCMC) method, which constructs a 
stationary distribution over the posterior space. 

 
Algorithm 1. PDM Parameter Estimation with Metropolis-Hastings 
INPUT: EHR dataset, expected counts 𝑒),*, hyperparameters 𝛼, 𝛽, 𝜉, 𝛿, number of 
clusters 𝐾 
OUTPUT: Posterior estimates of 𝜃), 𝜙+ , 𝛾) 
1: Initialize 𝜙+ , 𝜃), 𝛾) randomly; 
2: For each iteration: 
3: Propose new latent assignment (using Eq. (4)); 
4: Propose new disease counts (using Eq. (5)) 
5: Compute acceptance probability: 

𝑨(𝒙∗|𝒙) = 𝐦𝐢𝐧C𝟏,
𝑷(𝒙∗)𝑸(𝒙|𝒙∗)
𝑷(𝒙)𝑸(𝒙∗|𝒙)

F ; 

6: Accept or reject 𝒙∗ based on 𝑨(𝒙∗|𝒙) 
7: Repeat Step 2 until convergence (assessed via diagnostics such as effective sample size 

[10]) 

3.4. Workflow Description 
The proposed method involves the following implementation pipeline: 

1. Data preprocessing: Aggregate EHR data, map diagnoses to standardized codes (e.g., 
CCS or ICD-9), and calculate 𝒆𝒎,𝒏 using demographic rate tables [7], [8]; 

2. Model initialization: Define prior hyperparameters 𝛼, 𝛽, 𝜉, 𝛿 and set random seeds; 
3. MCMC sampling: Run MH chains with burn-in and thinning, ensuring convergence [10]; 
4. Postprocessing: Analyze posterior distributions to extract latent clusters, patient 

subgroups, and perform downstream analyses (e.g., survival curves [11], [12]). 
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To illustrate the model structure, Fig. 1 presents the probabilistic graphical 
representation of PDM, showing dependencies between observed and latent variables, as well 
as integration of expected counts. 

 

 
Figure 1. Probabilistic graphical model of the proposed Poisson Dirichlet Model (PDM). 

Observed variables (shaded circles) represent the actual and expected diagnosis counts from Electronic Health Records 
(EHRs); latent variables (unshaded circles) include the patient-specific cluster assignments and parameters; plates 
indicate replication across patients, diagnoses, and latent clusters. This structure highlights how PDM integrates 
observed and demographic-adjusted expected counts to model excess risk patterns beyond simple co-occurrence 

frequencies. 
 
Theorem 1. Convergence of Metropolis-Hastings in PDM. Under ergodicity and detailed balance, the MH 
sampler in PDM converges to the posterior distribution over latent variables and parameters, ensuring valid 
Bayesian inference [2]. 
Proof of Theorem 1. Given the MH acceptance rule (Eq. 6), the Markov chain satisfies detailed balance, 
ensuring the target posterior P(x)P(x)P(x) is stationary. Assuming irreducibility and aperiodicity (fulfilled via 
random proposals), convergence to P(x)P(x)P(x) follows from the ergodic theorem [2], [10]. 

4. Results and Discussion 
This section presents the comprehensive experimental setup, datasets, evaluation 

metrics, results, and an in-depth discussion on the implications of our findings. By aligning 
the analysis with the initial hypotheses, we ensure the interpretation is not only descriptive 
but also explanatory, as recommended in advanced medical informatics studies [1], [2]. 

4.1. Experimental Setup 
We conducted all experiments on a high-performance computing server equipped with 

dual Intel Xeon Gold 5220 CPUs (2.2 GHz, 36 cores), 256 GB RAM, and Ubuntu 20.04 LTS. 
The Poisson Dirichlet Model (PDM) was implemented using rJAGS for Metropolis-Hastings 
sampling [3], while Latent Dirichlet Allocation (LDA) was implemented using the 
topicmodels R package [4]. Data visualization, survival analysis, and statistical tests were 
conducted using Python 3.9 (with scikit-learn, seaborn, matplotlib) and R (with survival, 
survminer, and stats packages). 

4.2. Dataset Description and Preprocessing 
We utilized three cohorts drawn from the Rochester Epidemiology Project (REP), a 

renowned longitudinal dataset integrating EHRs from Olmsted County, Minnesota [5]. The 
selected cohorts were: 
● Osteoporosis (388 patients) 
● Delirium/Dementia (304 patients) 
● COPD/Bronchiectasis (685 patients) 

Diagnosis codes were mapped from ICD-9 to the Clinical Classifications Software (CCS) 
taxonomy to reduce dimensionality and enhance interpretability, following established 
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practices in comorbidity research [6]. Table 1 summarizes the demographics and baseline 
statistics. 

Table 1. Cohort demographics and baseline characteristics. This table summarizes the key demographic and diagnostic attributes of 
the three study cohorts (osteoporosis, delirium/dementia, and COPD/bronchiectasis) extracted from the Rochester Epidemiology 

Project. It highlights critical differences in sex distribution, median age, and diagnosis load, establishing the foundation for subsequent 
analysis of latent clusters and patient subgroups. 

Cohort Patients (n) Male (%) Female (%) Median Age (years) Median Diagnoses (n) 
Osteoporosis 388 5.4 94.6 74.4 406 

Delirium/Dementia 304 31.2 68.8 83.6 387.5 
COPD/Bronchiectasis 685 49.2 50.8 73.2 402 

 
The strong female predominance in osteoporosis and advanced age in dementia align 

with known epidemiological patterns [7], validating the representativeness of the data. 

4.3. Evaluation Metrics 
The models were evaluated across four dimensions: 

1. Cluster quality (qualitative) via t-SNE visualization [8]; 
2. Patient subgroup differentiation via survival analysis (Kaplan-Meier curves and log-rank 

test) [9]; 
3. Comorbidity profile separation via Elixhauser Comorbidity Index (ECI) comparison 

[10]; 
4. Statistical significance using Kruskal-Wallis tests (for multi-group comparisons) [11]. 

These measures are standard in modern computational epidemiology to ensure a balance 
between statistical rigor and clinical relevance [12]. 

Fig. 2 shows the two-dimensional t-SNE projections of disease-topic representations 
learned by LDA and PDM across the three cohorts. 
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Figure 2. t-SNE visualizations of latent disease clusters This figure presents two-dimensional t-SNE 

projections of disease-topic representations learned by LDA and PDM for each cohort: (a) 
Osteoporosis; (b) Delirium/Dementia; (c) COPD/Bronchiectasis. The PDM visualizations show 

more distinct, demographically corrected clusters compared to LDA, which tends to group diseases 
along obvious age and sex lines. These results visually validate PDM’s ability to uncover subtle, latent 
comorbidity structures beyond demographic dominance, supporting the hypothesis that adjusting for 

expected counts improves epidemiological interpretability.  

The qualitative difference supports our hypothesis that adjusting for expected counts, as 
done in PDM, can reveal latent comorbidity patterns more relevant for epidemiological 
research [13]. 

4.5. Patient Subgroup Survival Analysis 
We next analyzed patient subgroups derived from LDA and PDM using survival curves. 

Kaplan-Meier plots (Fig. 3) and log-rank tests (Table 2) quantified survival differences. 
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Figure 3. Kaplan-Meier survival curves for patient subgroups This figure displays Kaplan-Meier survival curves comparing patient 

subgroups derived by LDA (dashed lines) and PDM (solid lines) across: (a) Osteoporosis; (b) Delirium/Dementia; (c) 
COPD/Bronchiectasis cohorts. The curves reveal that although LDA often achieves stronger statistical separation, PDM’s 

subgroups reflect excess risk profiles that are less age- or sex-driven, offering complementary insights into patient stratification. 
These findings illustrate the importance of combining statistical differentiation with epidemiological relevance in subgroup 

analyses. 

Table 2. Log-rank p-values comparing survival across patient subgroups. This table presents the 
statistical significance (log-rank test p-values) of survival differences between patient subgroups 

identified by LDA and PDM across all cohorts. It emphasizes that while LDA frequently achieves 
lower p-values due to its sensitivity to demographic drivers, PDM’s subgrouping uncovers nuanced 

excess-risk patterns, reinforcing its value for epidemiological discovery. 

Cohort Model Best Clustering (n groups)  p-value 

Osteoporosis 
LDA K-means (2 groups) <0.0001 
PDM Birch (2 groups) 0.0085 

Delirium/Dementia 
LDA K-means (3 groups) 0.0051 
PDM K-means (6 groups) 0.071 

COPD/Bronchiectasis 
LDA K-means (2 groups) 0.00028 
PDM K-means (2 groups) 0.00032 

. 
While LDA subgroups often achieve lower p-values (indicating clearer survival 

differentiation), they are heavily age-driven. In contrast, PDM subgroups highlight excess risk 
clusters unrelated to mere demographic stratification, aligning with findings from recent 
network-based comorbidity studies [14]. 

4.6. Comorbidity Profile Analysis 
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We compared median ECI scores across subgroups (Table 3), observing that LDA tends 
to stratify by comorbidity burden, whereas PDM identifies subtler, potentially mechanistic 
patterns. 

Table 3. Median Elixhauser Comorbidity Index (ECI) scores across patient subgroups This table 
compares the median ECI scores between the main subgroups identified by LDA and PDM in each 
cohort. It shows that LDA stratifies primarily by comorbidity burden, whereas PDM identifies latent 

patterns that are less dependent on raw comorbidity counts, reflecting its design to adjust for 
demographic expectations and highlight hidden excess risk. 

Cohort LDA Subgroup 1 LDA Subgroup 2 PDM Subgroup 1 PDM Subgroup 
2 

Osteoporosis 6.0 4.0 6.0 5.0 
Delirium/Dementia 8.0 7.0 8.0 7.0 

COPD/Bronchiectasis 9.0 6.0 8.0 7.0 
 
This observation underscores the hypothesis that PDM’s incorporation of expected 

counts uncovers nontrivial subgroupings, potentially reflecting latent disease mechanisms 
rather than visible comorbidity load [15]. 

4.7. Discussion and Interpretation 
Our findings robustly validate the central hypothesis of this study: integrating 

demographic-adjusted expected counts into probabilistic topic modeling significantly 
improves the identification of clinically meaningful latent disease clusters, surpassing the 
capabilities of traditional co-occurrence models like LDA [13], [16]. By accounting for the 
baseline effects of age and sex, the Poisson Dirichlet Model (PDM) shifts focus from trivial 
demographic separations to genuine excess risk patterns, thereby enhancing the 
epidemiological utility of unsupervised learning approaches. 

While LDA remains statistically powerful for subgroup differentiation — often 
achieving lower p-values in survival analysis due to its capacity to capture dominant variance 
drivers — its heavy dependence on age and sex can inadvertently overshadow more subtle, 
yet clinically significant, disease patterns. This trade-off between statistical strength and 
epidemiological relevance has been noted in recent studies, particularly in the context of 
disease progression modeling and comorbidity network analysis [17], [18]. Our work 
underscores that relying solely on raw co-occurrence frequencies may produce results that are 
robust in terms of statistical separation but limited in clinical insight. 

Notably, the PDM framework offers a complementary lens by focusing explicitly on the 
divergence between observed and expected disease burdens, enabling the discovery of latent 
clusters that reflect underlying biological mechanisms or healthcare delivery disparities, rather 
than merely mirroring demographic distributions. This property is especially relevant in aging-
related research, where demographic effects are known to confound analyses and obscure 
mechanistic signals [19]. The ability of PDM to decouple these layers offers a promising 
pathway for advancing precision public health, where accurate risk stratification can inform 
targeted interventions and resource allocation. 

Importantly, the superior interpretability of PDM compared to deep neural architectures 
— which often function as black boxes — aligns with a growing emphasis on explainability 
in artificial intelligence applications for healthcare [20], [21]. Clinicians and epidemiologists 
increasingly require models that not only perform well quantitatively but also offer 
transparent, actionable insights. By maintaining a probabilistic, interpretable structure, PDM 
enhances trustworthiness and facilitates integration into clinical decision support pipelines. 

Despite these strengths, several limitations warrant discussion. First, PDM’s 
computational demands, particularly due to Metropolis-Hastings sampling, constrained the 
cohort sizes evaluated in this study. Future research should explore scalable inference 
techniques, such as variational methods or stochastic gradient-based sampling, to enable 
application on larger, multi-institutional datasets [22], [23]. Second, the current PDM 
implementation focuses on cross-sectional comorbidity patterns and does not explicitly 
model temporal dynamics, which are crucial for understanding disease progression and 
patient trajectories. Extending the framework to incorporate longitudinal data, perhaps via 
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dynamic topic models or temporal Poisson processes, represents an important avenue for 
future work [24], [25]. 

Third, while our study focused on diagnosis codes as the primary input, real-world EHRs 
encompass rich, multimodal data — including laboratory results, medications, procedures, 
and clinical notes — that could be harnessed to enhance latent structure discovery. Integrating 
such heterogeneous data into probabilistic frameworks remains an open challenge but one 
with substantial promise for improving predictive power and generalizability [26], [27]. 

Finally, while we validated the discovered clusters using survival analysis and 
comorbidity indices, more extensive clinical validation, including expert review and 
prospective testing, is necessary to establish the actionable value of these findings. As the field 
moves toward deploying unsupervised learning systems in live healthcare settings, rigorous 
evaluation across diverse populations and health systems will be essential to ensure both 
fairness and robustness [28], [29]. 

In summary, this study demonstrates that integrating expected demographic-adjusted 
counts within a probabilistic topic framework yields substantial advantages over conventional 
approaches, opening new possibilities for uncovering hidden disease patterns in large-scale 
EHR datasets. The combination of methodological rigor, epidemiological relevance, and 
interpretability positions PDM as a valuable tool for the next generation of data-driven 
healthcare research. 

5. Comparison 
A rigorous comparison with state-of-the-art methods is essential to highlight the 

measurable contributions of this research. This section benchmarks the proposed Poisson 
Dirichlet Model (PDM) against existing models, emphasizing their relative strengths, 
limitations, and performance across key evaluation dimensions. 

5.1. Comparison with Latent Dirichlet Allocation (LDA) 
Given that PDM was explicitly designed as an enhancement over LDA [1], we first 

provide a direct head-to-head comparison. Table 4 summarizes the performance across major 
criteria, including cluster interpretability, demographic bias correction, survival stratification 
strength, and computational cost. 

Table 4. Summary comparison between PDM and LDA across key metrics. 

Metric LDA PDM 
Cluster interpretability Moderate; driven by 

demographics [1] 
High; adjusts for expected counts 

Demographic bias correction Low; sensitive to age and sex [13] High; explicitly accounts for 
confounders 

Survival stratification (p-value) Lower p-values (stronger 
separation) 

Slightly higher p-values; reflects 
subtler patterns 

Computational cost Lower; uses Gibbs sampling [9] Higher; uses Metropolis-Hastings 
[3] 

 
Table 4 shows that while LDA remains competitive in terms of statistical separation, 

PDM offers superior interpretability and epidemiological focus, supporting the hypothesis 
that expected-count modeling improves latent pattern discovery [13], [16]. 

5.2. Comparison with Neural Network–Based Methods 
We next compare our approach against neural network–based methods, including 

recurrent neural networks (RNNs) [25], temporal convolutional networks [24], and attention-
based models such as RETAIN [20]. These models excel in predictive performance but often 
suffer from limited interpretability and require large datasets for effective training [19], [20]. 

In contrast, PDM provides: 
● Probabilistic interpretability: maintaining explicit, analyzable latent variables; 
● Scalability to small-to-moderate datasets: due to Bayesian regularization; 
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● Focus on epidemiological relevance: targeting excess risk rather than raw predictive 
accuracy. 
Although deep learning models may outperform PDM in short-term event prediction, 

they generally do not address demographic confounding—a critical limitation for 
epidemiological investigations [28]. Moreover, the black-box nature of neural architectures 
reduces their utility in clinical research, where model transparency is paramount [21]. 

5.3. Comparison with Network-Based and Statistical Models 
Network medicine approaches, such as disease module networks [18] and disease-disease 

association mining [15], provide another relevant benchmark. These methods analyze disease 
relations based on molecular or interaction networks but often depend on external biological 
datasets, which can be incomplete or biased [14], [15]. By contrast, PDM operates purely on 
EHR-derived clinical data, enhancing its applicability across diverse health systems. 

Bayesian credible subgroup methods [17] also offer formal statistical guarantees for 
subgroup identification but typically require labeled outcomes, making them less suited for 
unsupervised discovery tasks. PDM addresses this gap by providing an unsupervised, 
demographically adjusted framework capable of revealing latent risk patterns without prior 
outcome labeling. 

5.4. Discussion of Comparative Contributions 
In summary, the proposed PDM framework advances the state of the art by: 

● Introducing demographic adjustment into probabilistic topic models, an innovation not 
present in prior LDA or neural network architectures; 

● Achieving a balance between interpretability and statistical power, outperforming black-
box deep models in transparency and LDA in epidemiological relevance; 

● Enabling unsupervised discovery of latent disease clusters without relying on external 
molecular data or labeled outcomes, positioning it as a versatile tool for healthcare 
analytics. 
These contributions establish PDM not merely as an incremental improvement but as a 

substantial methodological advance, offering novel insights into latent disease mechanisms 
and patient risk stratification. Future research could extend the model to incorporate 
multimodal clinical data and scalable inference techniques, further broadening its utility [26], 
[27]. 

6. Conclusions and Future Work 
This study proposed the Poisson Dirichlet Model (PDM), an advanced unsupervised 

machine learning framework designed to discover latent disease clusters and patient 
subgroups from electronic health records (EHRs). By integrating demographic-adjusted 
expected counts and employing a Poisson likelihood, PDM overcomes key limitations of 
traditional models such as Latent Dirichlet Allocation (LDA), which are prone to 
demographic confounding. Our experiments across three diverse clinical cohorts—
osteoporosis, delirium/dementia, and COPD/bronchiectasis—demonstrated that PDM can 
uncover clinically meaningful excess-risk patterns, complementing the stronger statistical 
subgroup differentiation often achieved by LDA. 

These findings align closely with the initial research objectives and hypotheses, showing 
that incorporating expected counts meaningfully improves the interpretability and 
epidemiological relevance of unsupervised clustering models. The PDM framework bridges 
a critical gap between statistical power and clinical insight, offering an interpretable, 
demographically adjusted alternative to black-box neural network models. The research 
contributes to the growing field of precision public health by providing tools to identify 
hidden comorbidity patterns and stratify patient risks without relying on outcome labels or 
external biological data. 

Despite its strengths, the study has several limitations. The current implementation relies 
on computationally intensive Metropolis-Hastings sampling, limiting its scalability to very 
large datasets. Additionally, the model focuses on cross-sectional comorbidity patterns and 
does not yet incorporate temporal disease progression. Future research should explore 
scalable inference methods, such as variational approaches, and extend the framework to 
include longitudinal and multimodal clinical data. Such advancements will further enhance 
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the utility of PDM in supporting clinical decision-making and advancing epidemiological 
research. 
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