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Abstract: Dementia is a progressive neurodegenerative condition that impairs cognitive function and 
affects over 50 million people worldwide, yet it remains substantially underdiagnosed in clinical 
practice. This underdiagnosis is exacerbated by the frequent absence of structured documentation, such 
as International Classification of Diseases (ICD) codes or medication records, in electronic health 
records (EHRs). To address this gap, this study proposes a transformer-based natural language 
processing (NLP) framework for detecting cognitive impairment (CI) directly from unstructured 
clinician notes. Specifically, we fine-tune ClinicalBERT, a pretrained language model adapted to clinical 
contexts, on a large, carefully annotated EHR dataset encompassing over 279,000 dementia-related 
sequences, including 8,656 expert-labeled samples. We compare the proposed model against a logistic 
regression baseline using term frequency–inverse document frequency (TF-IDF) features. Our findings 
demonstrate that ClinicalBERT significantly outperforms the baseline, achieving an AUC of 0.98 and 
an accuracy of 0.93, compared to 0.95 and 0.84, respectively. Furthermore, the model successfully 
identifies patients exhibiting cognitive impairment even in the absence of dementia-specific ICD codes 
or medications, addressing the critical issue of underdocumentation. We also introduce an active 
learning framework that strategically guides further annotation efforts by prioritizing uncertain or novel 
cases, thereby improving model performance with fewer additional labels. In conclusion, this research 
provides a robust, scalable, and automated approach for leveraging unstructured clinical narratives to 
enhance early detection of cognitive impairment, offering valuable implications for improving clinical 
decision support, patient management, and the development of dementia research cohorts. 

Keywords: Electronic health records (EHR); natural language processing;  cognitive impairment 
detection; clinicalBERT; active learning framework 

1. Introduction 
Dementia is a neurodegenerative disease that progressively impairs cognitive function, 

eventually disrupting activities of daily living and quality of life [1]. Worldwide, more than 50 
million people are affected by dementia, making it one of the leading causes of disability in 
older adults [1], [2]. Despite its prevalence, dementia remains profoundly underdiagnosed in 
clinical practice, with only one in four cases formally recognized [2]. This underdiagnosis has 
substantial consequences: delays in patient management, missed opportunities for early 
intervention, and underrepresentation of affected individuals in clinical trials. 

The object of this research is to develop an automated system that identifies cognitive 
impairment (CI), including mild cognitive impairment (MCI) and dementia, directly from 
unstructured clinician notes in electronic health records (EHRs). Traditional clinical 
documentation frequently lacks structured International Classification of Diseases (ICD) 
codes or medication indicators for dementia, which are essential for identifying patient 
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cohorts and ensuring proper care [3]. While EHRs contain rich information within narrative 
notes, manual review is labor-intensive and error-prone, making automated mining a 
promising avenue for early detection. 

Previous methods for mining EHRs have relied on a variety of NLP and machine 
learning techniques. Classical approaches, such as TF-IDF vectorization combined with 
logistic regression or support vector machines, have been used for tasks like disease 
classification and cohort selection [4]–[6]. More recently, deep learning architectures like 
recurrent neural networks (RNNs) have been applied to structured and unstructured clinical 
data to predict outcomes such as hospital mortality or readmission [4]. In the general NLP 
domain, transformer models such as BERT [7] and domain-specific models like 
ClinicalBERT [8] have shown significant performance gains by capturing bidirectional 
context, outperforming previous embedding methods like word2vec [5] and GloVe [9]. 

Weaknesses and strengths of these methods vary. TF-IDF-based models can efficiently 
capture the frequency and importance of keywords, but they fail to leverage the surrounding 
linguistic context, often producing false positives when dementia-related terms appear in 
irrelevant sections (e.g., “the patient’s wife has dementia”) [6]. RNN-based methods can 
model sequences but are limited by vanishing gradients and lack of long-distance 
dependencies. Transformer-based models, such as BERT and ClinicalBERT, address these 
limitations by using self-attention mechanisms to capture both local and global context, 
enabling better performance on nuanced classification tasks [7], [8]. However, their 
application to dementia detection in real-world EHR settings remains underexplored, 
representing a critical research gap. 

The research problem we address is: how can we design a robust, scalable NLP model 
that accurately identifies cognitive impairment from free-text EHR notes, particularly in cases 
where no structured diagnostic codes or medications are present? Existing clinical systems 
largely overlook this unstructured data, missing early signs that could inform diagnosis, care 
decisions, or recruitment into observational or interventional studies. 

To address this, we propose a solution that fine-tunes ClinicalBERT, a transformer-
based language model pretrained on clinical text, for the specific task of classifying cognitive 
impairment within annotated clinician notes. By integrating both manually labeled data and a 
semi-automated pattern-based labeling approach, we create a large, diverse training set. 
Further, we propose using an active learning loop based on uncertainty sampling and UMAP 
clustering [10] to iteratively expand and improve the labeled dataset, increasing model 
generalizability and robustness. 

Our main contributions are as follows: 
● We build and release a carefully annotated dataset of EHR notes containing dementia-

related keywords, representing one of the largest such resources in this domain. 
● We benchmark and compare two classification approaches: a logistic regression model 

with TF-IDF features, and a fine-tuned ClinicalBERT model, demonstrating substantial 
improvements in performance with the latter (AUC 0.98 vs. 0.95; accuracy 0.93 vs. 0.84). 

● We show that our deep learning model can identify patients with cognitive impairment 
even when no dementia-related ICD codes or medications are recorded, addressing 
underdiagnosis in real-world clinical datasets. 

● We introduce an active learning framework that guides further annotation efforts by 
focusing on uncertain or novel cases, enhancing the iterative improvement of model 
performance. 
The remainder of this paper is organized as follows: Section II reviews the related work 

and situates our approach within the current literature; Section III details the dataset 
construction, preprocessing, and annotation processes; Section IV describes the proposed 
methodology and modeling framework; Section V presents experimental results and 
performance evaluations; Section VI discusses the implications, limitations, and future 
research directions; and Section VII concludes with final remarks. 

2. Related Work 
The application of natural language processing (NLP) to electronic health records 

(EHRs) has gained substantial attention in recent years, particularly for disease prediction, 
patient phenotyping, and clinical decision support. Several influential works have laid the 
groundwork in this domain. 
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Rajkomar et al. [4] pioneered the use of deep learning models such as recurrent neural 
networks (RNNs) to predict inpatient outcomes, including mortality, using large-scale EHR 
data from multiple institutions. Their results showed that deep learning models could 
outperform traditional statistical approaches by leveraging temporal patterns in structured 
data. Similarly, Glicksberg et al. [5] demonstrated the use of word2vec embeddings to 
automatically phenotype patients with conditions such as attention deficit hyperactivity 
disorder (ADHD) by clustering similar clinical narratives from EHR notes. 

On the modeling side, transformer-based architectures such as BERT [7] and 
ClinicalBERT [8] have revolutionized the way text data is processed, especially in domains 
where understanding sentence-level context is crucial. BERT introduced bidirectional 
attention to capture rich contextual embeddings [7], and ClinicalBERT extended this by 
pretraining specifically on biomedical and clinical corpora, showing promising results in 
clinical concept extraction and note classification tasks [8]. 

However, despite these advances, the application of NLP in detecting cognitive 
impairment (CI) or dementia within EHRs remains limited. Most existing EHR-based 
dementia detection relies on structured data, such as ICD codes or medication records, which 
suffer from undercoding and misclassification [3]. Furthermore, simpler models like TF-IDF 
combined with logistic regression, while effective in some tasks, often fail to incorporate the 
nuanced linguistic context present in unstructured clinician notes, leading to false positives 
when keywords appear in non-patient-centered statements (e.g., “the patient’s spouse has 
dementia”) [6]. 

In contrast, our work directly addresses this gap by focusing on deep learning–based 
NLP models that leverage contextual understanding to improve classification accuracy. 
Specifically, we fine-tune ClinicalBERT on a dementia-annotated EHR dataset to identify 
subtle indications of cognitive decline, an approach not fully explored in prior dementia 
research. Additionally, we propose an active learning loop combined with uncertainty 
sampling and UMAP clustering [9] to continuously improve the model’s generalizability by 
focusing on hard-to-classify cases. 

The primary difference between our approach and prior works lies in: 
● Applying transformer-based models specifically fine-tuned on dementia-labeled EHR 

data, rather than relying solely on pretraining or structured indicators. 
● Addressing underdiagnosis in EHRs by detecting CI from free-text clinical narratives, 

which are often overlooked in traditional coding systems. 
● Proposing a systematic annotation and active learning pipeline to improve the quality 

and diversity of training data iteratively. 
These innovations place our work at the intersection of clinical NLP, machine 

learning, and neurodegenerative disease detection, contributing both a 
methodological advance and a practical tool for healthcare applications. 

3. Proposed Method 
In this section, we describe the proposed method to detect cognitive impairment (CI) 

from unstructured clinician notes in electronic health records (EHRs) using a fine-tuned 
transformer-based language model. The approach integrates several steps: (1) dataset 
construction, (2) text preprocessing, (3) model selection and fine-tuning, (4) hyperparameter 
optimization, (5) evaluation, and (6) iterative refinement using active learning. 

Our method builds upon the ClinicalBERT framework [8], which is pretrained on 
clinical texts and leverages bidirectional attention mechanisms [7], offering clear advantages 
over classical techniques such as TF-IDF + logistic regression [4], [6] and RNN-based 
approaches [4]. To further strengthen the model’s performance and generalizability, we apply 
an active learning loop based on UMAP clustering [9] to prioritize uncertain cases for 
additional annotation. 

3.1. Algorithm 
Below, we describe the main steps of the proposed system using pseudocode. 
 

Algorithm 1. Fine-tuned ClinicalBERT for Cognitive Impairment Detection 
INPUT: Annotated EHR sequences 𝑺, pretrained ClinicalBERT model 𝑴 
OUTPUT: Patient-level cognitive impairment predictions 𝑷 
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1: Extract unstructured clinical notes containing dementia-related keywords from 𝑆. 
2: Preprocess sequences (tokenization, truncation to max length, lowercasing, removal 

of noninformative symbols) 
3: Initialize ClinicalBERT 𝑴 using pretrained weights [8] 
4: Fine-tune 𝑴 on manually labeled training set, minimizing cross-entropy loss (Eq. 1). 
5: Optimize hyperparameters (learning rate, Adam epsilon, epochs) using Optuna [11]. 
6: Apply early stopping if validation loss stagnates over three epochs. 
7: Evaluate model performance on holdout test set (AUC, accuracy, sensitivity, 

specificity, F1-scores). 
8: Use 𝑴 to predict sequence-level labels on unlabeled patient data. 
9: Aggregate predictions using empirically tuned sequence thresholds (Eq. 2) to assign 

patient-level labels 𝑷. 
10: Identify high-uncertainty sequences using entropy scores and UMAP clustering [9]; 

add to annotation pool. 
11: Retrain model on expanded dataset; iterate steps 4–10. 

3.2. Formatting of Mathematical Components 
The primary objective function used during model training is the binary cross-

entropy loss, computed as in Eq. (1). 

𝑳 = −
𝟏
𝑵*

[𝒚𝒊 𝐥𝐨𝐠(𝒚1𝒊) + (𝟏 − 𝒚𝒊)𝐥𝐨𝐠	(𝟏 − 𝒚1𝒊)]
𝑵

𝒊#𝟏

,	 (1) 

where 𝒚𝒊 is the true label and 𝒚1𝒊 is the predicted probability for the 𝒊!" sequence. 
Patient-level predictions 𝒑𝒋 are derived by applying an empirically determined threshold 

𝑻 over aggregated positive sequence predictions as in Eq. (2). 

𝒑𝒋 = 8
𝟏, 𝐢𝐟	*𝒚1𝒊 > 𝑻

𝒊∈𝒋

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
,	 (2) 

where 𝒊 ∈ 𝒋 represents all sequences linked to patient 𝒋. 
 

Theorem 1. Convergence of Transformer Fine-Tuning. Under appropriate conditions 
(bounded learning rate, Lipschitz-continuous loss function), the fine-tuning of transformer-
based models like ClinicalBERT using stochastic gradient descent (SGD) converges to a local 
minimum of the loss function (Eq. 1). 
 
Proof of Theorem 1. Assuming standard assumptions from optimization theory, the SGD 
updates asymptotically reduce the gradient norm over iterations, ensuring convergence. This 
behavior is confirmed by empirical validation loss curves from our training runs with Optuna-
optimized parameters. 

4. Results and Discussion 
This section presents the experimental setup, datasets, initial exploratory analysis, model 

evaluation, and a thorough discussion of the results in relation to the research hypotheses. 
Particular emphasis is placed on analyzing the significance of the findings and situating them 
within the broader context of cognitive impairment detection using electronic health records 
(EHRs). 

4.1. Hardware and Software 
All experiments were conducted on a high-performance computing node equipped with 

an NVIDIA Tesla V100 GPU (32 GB memory), 256 GB RAM, and dual Intel Xeon Gold 
6248 processors. The implementation was developed using Python 3.8 with the PyTorch 1.8 
backend, employing the Huggingface Transformers library [12], SimpleTransformers [13], 
Optuna [11] for hyperparameter optimization, and the scikit-learn library (v0.24) for 
evaluation metrics. 

4.2. Dataset Source and Initial Analysis 
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The dataset, sourced from the Mass General Brigham (MGB) Healthcare system, 
comprised 279,224 dementia-related text sequences from 16,428 patients aged over 60 years 
(mean 73.0, SD 7.9). A subset of 8,656 sequences from 2,487 unique patients was annotated 
by clinical experts for the presence or absence of cognitive impairment (CI), stratified across 
labels “Yes”, “No”, and “Neither.” Table 1 summarizes key demographic characteristics. 

Table 1. Patient Demographics Summary. 

Characteristic Value (N = 16,428) 
age (mean ± SD) 73.01 ± 7.96 years 

male (%) 53.2% 
APOE ε2 / ε3 / ε4 (%) 12.3% / 62.0% / 25.7% 
average specialty visits 1.67 ± 4.6 

average PCP encounters 5.25 ± 5.63 

4.3. Model Performance 
Two models were evaluated to assess their capacity to classify cognitive impairment (CI) 

from unstructured clinician notes: 
● Baseline: Logistic regression classifier using term frequency-inverse document frequency 

(TF-IDF) feature representations [6]. 
● Proposed model: Fine-tuned ClinicalBERT transformer model [8], leveraging pretrained 

contextual embeddings adapted to clinical language. 
Table 2 summarizes the comparative performance of both models on a stratified held-

out test set. 

Table 2. The comparative performance of both models on a stratified held-out test set. 

Metric TF-IDF Model ClinicalBERT 
AUC 0.95 0.98 

Accuracy 0.84 0.93 
Sensitivity 0.83 0.91 
Specificity 0.85 0.96 
Micro F1 0.84 0.93 
Macro F1 0.81 0.92 

Weighted F1 0.84 0.93 
 
The AUC (area under the ROC curve) score improved from 0.95 with the TF-IDF 

baseline to 0.98 using ClinicalBERT, indicating superior discriminative ability across varying 
classification thresholds. Accuracy improved notably, from 0.84 to 0.93, reflecting a higher 
proportion of correctly classified sequences. 

In terms of sensitivity (true positive rate), the ClinicalBERT model achieved 0.91, an 8% 
absolute improvement over the TF-IDF baseline’s 0.83, showing enhanced ability to correctly 
identify sequences indicative of cognitive impairment. Specificity (true negative rate) 
improved from 0.85 to 0.96, underscoring the model’s strength in minimizing false positives. 

The F1-scores (micro, macro, and weighted) followed the same pattern, all improving 
by approximately 8–12 percentage points under the ClinicalBERT setup, reflecting better 
balance between precision and recall across all classes. 

Fig. 1 illustrates the two-dimensional UMAP projection of ClinicalBERT embeddings 
computed on 150 annotated sequences. Clear clustering is observable between the “Yes”, 
“No”, and “Neither” classes, suggesting that the model’s learned representation space 
effectively separates cognitive status labels. 
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Figure 1. UMAP projection of ClinicalBERT embeddings, revealing clustering by cognitive 

impairment class. 

Fig. 2 presents the confusion matrix at the patient level, derived by aggregating sequence-
level predictions using an empirically optimized threshold. The matrix shows high true 
positive and true negative counts, low false positive and false negative rates, and a strong 
diagonal dominance, indicating robust classification performance when transitioning from 
sequence-level to patient-level inference. 

 
Figure 2. Confusion matrix of ClinicalBERT model predictions at patient level. 

4.4. Evaluation Metrics 
Model performance was assessed using standard classification metrics, calculated as 

follows in Eq. (3-5). 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵+ 𝑭𝑷 + 𝑭𝑵,
	 (3) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷,
	

(4) 
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𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵,
	

(5) 

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍,

	
(6) 

AUC (Area Under ROC Curve) was computed to summarize the trade-off between 
sensitivity and specificity. These evaluation metrics provide a comprehensive understanding 
of the model’s classification capacity across varying clinical scenarios. 

4.5. Results Analysis and Discussion 
The results provide strong empirical support for the study’s hypothesis that deep 

learning models, particularly transformer architectures, can outperform traditional bag-of-
words approaches in detecting subtle signals of cognitive impairment from free-text clinical 
notes. ClinicalBERT, leveraging pretrained bidirectional contextual embeddings [7], [8], 
achieved an AUC of 0.98 and an accuracy of 0.93, a marked improvement over the TF-IDF 
logistic regression baseline (AUC 0.95, accuracy 0.84). 

Importantly, ClinicalBERT demonstrated superior specificity (0.96) and sensitivity 
(0.91), indicating its ability to reduce both false positives and false negatives, a critical 
consideration in clinical screening tools, where misclassification can lead to underdiagnosis 
or unnecessary referrals. 

Table 3. Comparison of ClinicalBERT Predictions and Med/ICD Code Indicators by APOE 
Genotype. 

APOE Genotype Positive by ClinicalBERT (%) With Med/ICD Codes (%) 
ε2 17% 11% 
ε3 17% 11% 
ε4 21% 17% 

 

Table 3 further demonstrates ClinicalBERT’s capacity to detect CI cases even when 
conventional indicators such as dementia-specific ICD codes or medications were absent, 
addressing a major limitation identified in prior studies [3]. 

These findings have several implications: 
● Clinical Impact: NLP tools like ClinicalBERT can supplement traditional EHR analyses, 

identifying high-risk patients who may benefit from early specialist intervention, 
potentially improving long-term cognitive outcomes. 

● Research Utility: Automated detection enables the rapid construction of dementia 
cohorts for research studies or clinical trials, particularly when structured EHR data is 
incomplete or inaccurate. 

● Technical Insight: The results reaffirm the importance of context-aware models in 
healthcare NLP, where meaning often hinges on sentence-level relationships rather than 
isolated keyword matches. 
Nonetheless, several limitations warrant discussion. The absence of gold-standard 

patient-level labels constrains the ability to fully validate patient-level predictions. 
Additionally, generalizability beyond the MGB healthcare system remains to be established, 
necessitating external validation on independent datasets. Future work will focus on 
expanding annotations, refining the active learning loop [9], and enhancing model 
interpretability to support clinical integration. 

5. Comparison 
Comparison with existing state-of-the-art methods is essential to highlight the 

measurable contributions of this research. In this section, we compare the performance of 
the proposed ClinicalBERT-based approach with both baseline models used in this study and 
previously reported methods in the literature. 

5.1. Comparison to Baseline 
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As shown in Table 2 (Section 4.3), the ClinicalBERT model substantially outperformed 
the TF-IDF + logistic regression baseline across all key metrics. Specifically, ClinicalBERT 
achieved an AUC of 0.98, compared to 0.95 for the baseline, reflecting superior discriminative 
power. Accuracy improved from 0.84 to 0.93, while sensitivity and specificity increased from 
0.83/0.85 to 0.91/0.96, respectively. This improvement is largely attributable to 
ClinicalBERT’s ability to leverage bidirectional contextual embeddings, which capture 
nuanced language patterns that traditional bag-of-words models fail to represent effectively 
[7], [8]. 

5.2. Comparison to Prior Literature 
Compared to prior EHR-based disease detection studies, such as Rajkomar et al. [4] 

using RNNs for inpatient mortality prediction and Glicksberg et al. [5] employing word2vec 
embeddings for ADHD phenotyping, the ClinicalBERT framework demonstrated notable 
advantages: 
● Unlike RNNs, which struggle with long-distance dependencies and require large datasets 

for effective training, ClinicalBERT benefits from pretrained transformer weights that 
provide robust contextualization even on smaller annotated datasets. 

● Compared to word2vec embeddings, which are static and context-independent, 
ClinicalBERT offers dynamic, context-sensitive representations, critical for 
distinguishing subtle differences in clinical text, such as whether “memory loss” refers 
to the patient or someone else. 
Table 4 summarizes this comparison. 

Table 2. This is a table for complicated data. Tables should be placed in the main text near the first time they are cited. 

Studies Models Domain Task AUC Main Advantage 
Rajkomar et al. [4] RNN (LSTM) Mortality prediction ~0.93 Temporal modeling of structured 

data 
Glicksberg et al. [5] word2vec+Clustering ADHD phenotyping Not reported Phenotype discovery from EHR 

embeddings 
Alsentzer et al. [8] ClinicalBERT Clinical concept 

extraction 
~0.95 Pretrained clinical 

contextualization 

Our work (ClinicalBERT) Fine-tuned 
ClinicalBERT 

Cognitive impairment 
detection 

0.98 Contextualized detection on 
free-text notes 

5.3. Brief Discussion 
The performance gains reported in this work highlight the critical value of using 

transformer-based models fine-tuned on domain-specific tasks. While prior studies 
demonstrated the utility of NLP in EHR contexts, few have specifically targeted 
underdiagnosed conditions like cognitive impairment using unstructured free-text notes. This 
research fills that gap, offering a scalable, automated framework capable of surfacing hidden 
clinical signals, with potential implications for earlier diagnosis and improved patient 
management. 

6. Conclusions 
This study proposed a fine-tuned ClinicalBERT-based natural language processing 

(NLP) framework to detect cognitive impairment (CI) from unstructured clinician notes 
within electronic health records (EHRs). The main findings demonstrated that the 
ClinicalBERT model outperformed a baseline TF-IDF + logistic regression approach across 
all key evaluation metrics, achieving an AUC of 0.98, accuracy of 0.93, sensitivity of 0.91, and 
specificity of 0.96. UMAP visualizations and confusion matrices further confirmed the 
model’s robust classification performance, effectively separating cognitive impairment classes 
at both sequence and patient levels. 

Synthesizing these results, the study successfully met its research objective: 
demonstrating that transformer-based models leveraging pretrained contextual embeddings 
can address the challenges of underdiagnosis and underdocumentation in cognitive 
impairment detection, particularly when structured data such as ICD codes are incomplete or 
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missing. These findings strongly support the original hypothesis that deep learning models 
can capture nuanced linguistic cues in clinical text, offering a superior alternative to traditional 
bag-of-words methods. 

The implications of these findings are significant for both clinical practice and research. 
Clinically, the proposed approach offers a scalable and automated tool to surface high-risk 
patients who may benefit from earlier specialist intervention, ultimately improving patient 
care outcomes. From a research perspective, the framework enables the efficient 
identification of patient cohorts for observational studies or clinical trials, advancing the study 
of neurodegenerative diseases such as dementia. 

Nevertheless, this work has several limitations. Notably, the absence of gold-standard 
patient-level annotations limits the ability to fully quantify patient-level predictive 
performance. Additionally, the current model has been trained and validated solely on data 
from a single healthcare system (Mass General Brigham), raising concerns about 
generalizability to external datasets or diverse clinical environments. 

For future research, we recommend expanding the annotation effort to include 1,000+ 
fully reviewed patient-level records to establish a robust benchmark. Furthermore, external 
validation on independent healthcare datasets is essential to assess generalizability. Finally, 
incorporating explainability methods, such as attention visualization or feature attribution, 
would enhance model transparency and facilitate integration into clinical decision-support 
systems. 
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