
 

Journal of Machine Intelligence in 
Healthcare 

E-ISSN: XXXX-XXXX 
P-ISSN: XXXX-XXXX 

 

 
DOI : https://doi.org/xxxx... https://openjournalshub.com/index.php/JMIH  

(Research/Review) Article 

Lab-Integrated Multi-Aspect Pretraining for Prognostic EHR 
Modeling 
Nova Ariyanto 1,* and Sherly Nur Ekawati 2,3 

1 Department of Informatics, Universitas Muhammadiyah Semarang, Indonesia; e-mail : 
novaariyanto910@students.unimus.ac.id 

2 Postgraduate Program of Medical Laboratory Science, Universitas Muhammadiyah Semarang, Indonesia;  
3 Department of Medical Laboratory Technology, Universitas Muhammadiyah Kudus, Indonesia; e-mail : 

sherlynureka@gmail.com 
* Corresponding Author : novaariyanto910@students.unimus.ac.id 

Abstract: The widespread adoption of electronic health records (EHRs) has created vast datasets 
containing valuable patient information, yet many machine learning models underutilize single-visit 
records due to the lack of future outcome labels. This research addresses the challenge of fully 
leveraging both single-visit and multi-visit patient data by proposing MPLite, a lightweight multi-aspect 
pretraining framework. The objective is to improve predictive healthcare models by using lab results 
as auxiliary input features to enhance medical concept representation. The proposed method employs 
a multi-layer perceptron (MLP) that pretrains on the relationship between lab results and diagnosis 
codes, allowing integration as a plug-and-play module into various downstream models without 
modifying their core architectures. Experiments were conducted on the MIMIC-III and MIMIC-IV 
datasets, focusing on diagnosis prediction and heart failure prediction tasks. Results showed consistent 
improvements across all tested models, with notable gains in weighted-F1 score, recall, and area under 
the curve (AUC), demonstrating that MPLite significantly strengthens the predictive performance of 
baseline models. The findings confirm that incorporating auxiliary features from lab results can 
effectively address data underutilization and enhance generalizability across diverse predictive tasks. In 
conclusion, MPLite provides a scalable and efficient solution for advancing predictive modeling in 
healthcare, offering practical contributions to early intervention strategies and personalized patient care 
while opening pathways for future research to extend the framework to other data modalities and 
clinical applications. 

Keywords: Electronic health records (EHR); multi-aspect pretraining; lab result integration; 
prognostic modeling; diagnosis prediction; heart failure prediction 

1. Introduction 
The widespread digitization of healthcare systems has led to the accumulation of vast 

amounts of electronic health records (EHRs), which include structured data such as 
diagnoses, medications, procedures, and laboratory test results. These rich data repositories 
offer unprecedented opportunities for computational modeling, particularly for disease 
prediction, risk stratification, and personalized medicine applications [1], [2], [3]. Among the 
many machine learning approaches applied to EHRs, deep learning has emerged as a 
particularly powerful framework due to its ability to capture temporal patterns and complex 
interactions within patient histories [4], [5], [6]. 

Despite these advancements, most EHR-based predictive models predominantly rely on 
multi-visit patient data to train supervised models for tasks such as next-visit diagnosis 
prediction or disease onset forecasting [7], [8], [9]. This reliance creates a critical limitation 
because it overlooks single-visit records, which often lack temporal continuity or future labels 
but nonetheless represent the majority of real-world clinical data. For example, in the widely 
used MIMIC-III dataset, over 80% of patients have only a single recorded visit [1], creating 
a large but underutilized source of information. 

Received: January 12, 2025 
Revised: February 23, 2025 
Accepted: April 18, 2025 
Published: April 30, 2025 
Curr. Ver.: April 30, 2025 

 

Copyright: © 2025 by the authors. 
Submitted for possible open access 
publication under the terms and 
conditions of the Creative 
Commons Attribution (CC BY SA) 
license 
(https://creativecommons.org/licen
ses/by-sa/4.0/) 



Journal of Machine Intelligence in Healthcare 2025 (April), Vol. 1, No. 1, Ariyanto and Ekawati.  14 of 21 
 

 

To address this gap, researchers have explored two main strategies. The first involves 
transformer-based models such as G-BERT [7] and Med-BERT [10], which apply self-
supervised learning by masking tokens within single admissions to learn intermediate 
representations. While these models have demonstrated success, they are often 
computationally intensive and sensitive to the ordering of medical codes, making them 
challenging to deploy in real-world clinical settings. The second strategy involves multi-aspect 
learning frameworks such as CGL [11] and GCT [12], which enrich medical concept 
representations by incorporating auxiliary data like lab results or clinical notes. Although 
promising, these methods typically require complex preprocessing steps and may not 
generalize well across diverse tasks or system architectures. 

In this study, we propose to address the underutilization of single-visit EHR data by 
introducing MPLite, a novel lightweight multi-aspect pretraining framework. MPLite 
enhances the predictive capacity of baseline models by learning to predict diagnoses based 
solely on lab test results using a multi-layer perceptron (MLP). This approach enables the 
inclusion of single-visit patient records in the training pipeline, expanding the usable data pool 
while maintaining modularity and computational efficiency. Furthermore, MPLite is designed 
to integrate seamlessly into various existing predictive models without requiring changes to 
their core architectures. 

The main contributions of this work are summarized as follows: 
• We propose a new plug-in-and-play pretraining framework, MPLite, that leverages 

single-visit EHR data to improve downstream predictive tasks. 
• We design a lab result–based proxy task that enriches diagnosis representations and 

supports transferability across predictive tasks. 
• We demonstrate the effectiveness of MPLite through extensive experiments on the 

MIMIC-III [1] and MIMIC-IV [3] datasets using ten state-of-the-art baseline models, 
showing consistent improvements in diagnosis and heart failure risk prediction. 

• We validate the robustness and generalizability of MPLite, highlighting its performance 
in both binary and multi-label classification tasks and its minimal dependence on 
sequential modeling. 
The rest of this paper is structured as follows. Section 2 reviews related work in EHR-

based deep learning, including sequence-based, graph-based, and multi-aspect methods. 
Section 3 introduces the MPLite framework and its technical components. Section 4 presents 
experimental results and performance evaluation. Section 5 provides a comparative analysis 
against prior models, and Section 6 concludes with key findings and directions for future 
research. 

2. Related Work 
The application of deep learning to electronic health records (EHRs) has sparked rapid 

growth in predictive healthcare research, enabling models to uncover complex temporal, 
clinical, and physiological patterns [1], [2], [3]. Existing approaches can be broadly grouped 
into three main paradigms: sequence-based neural models, graph-augmented architectures, 
and multi-aspect feature learning frameworks. 

2.1. Sequence Modeling with RNNs and CNNs 
Early studies focused on sequence models such as recurrent neural networks (RNNs) 

and convolutional neural networks (CNNs) to capture temporal dependencies across patient 
visits. Notable examples include GRU [4], RETAIN [5], and Timeline [6], which introduced 
attention mechanisms and time-aware representations to improve prediction accuracy. 
Meanwhile, CNN-based architectures like Deepr [7] and AdaCare [8] utilized convolutional 
filters for local pattern extraction from medical code sequences. Although effective, these 
models largely ignored auxiliary clinical signals such as lab results, which often carry critical 
diagnostic information. 

2.2. Graph-Based and Transformer-Based Approaches 
To address limitations in purely sequential modeling, more recent work has incorporated 

structured knowledge and contextual relationships using graph-based learning. Models such 
as GRAM [9] and G-BERT [10] embed medical ontologies or leverage graph-enhanced 
transformer architectures to capture semantic connections between medical concepts. 
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Similarly, GCT [11] and ME2Vec [12] adopt graph neural networks and variational techniques 
to build richer patient representations. Transformer-based approaches like Med-BERT [13], 
HiTANet [14], and Sherbet [15] further extend this line by employing attention-driven models 
that treat EHR data as sequences of tokens, mirroring techniques from natural language 
processing. Despite their success, these methods often require large computational resources 
and are sensitive to the ordering of input codes, making them less practical for lightweight or 
real-time applications. 

2.3. Multi-Aspect Feature Learning 
Recognizing that structured codes alone are insufficient, multi-aspect models aim to 

integrate diverse data modalities such as lab test results, demographics, and clinical notes. 
Frameworks like CGL [16] and MedGTX [17] combine graph and text information to 
enhance temporal event prediction, while MiME [18] and GCT [11] specifically explore lab 
result integration. However, many of these models rely on complex preprocessing pipelines 
or bespoke architectures that limit their modularity and transferability across different tasks. 

2.4. Positioning Our Work 
In contrast to the above efforts, our proposed MPLite framework focuses on 

underutilized single-visit EHR data, which represents the majority of records in real-world 
healthcare systems like MIMIC-III [1]. Rather than depending on large, transformer-based 
networks or graph structures, MPLite leverages a lightweight multi-layer perceptron (MLP) 
that learns to predict diagnoses directly from lab result patterns. This design offers several 
advantages: 
• It enhances diagnosis representations through lab-based proxy tasks. 
• It works effectively on both single-visit and multi-visit patients. 
• It functions as a modular plug-in compatible with a wide range of existing predictive 

models. 
By introducing MPLite, we address key challenges in data sparsity and architectural 

complexity, providing a generalizable and scalable solution for improving predictive 
healthcare modeling. 

3. Proposed Method 
In this section, we introduce MPLite, a lightweight, multi-aspect pretraining framework 

designed to enhance predictive modeling on electronic health records (EHR) by leveraging 
auxiliary lab test data. Our approach focuses on addressing the underutilization of single-visit 
patient records, which are often excluded in prior sequential or graph-based models [1], [4], 
[9], [10]. 

3.1. Problem Formalization 
comprising N patients, where each patient 𝑃𝑖  has 𝑇𝑖  admissions represented as a 

sequence of multivariate vectors {𝑥1, 𝑥2, … , 𝑥𝑇𝑖 𝑖} . Each vector 𝑥𝑡   denotes a multi-hot 
encoding of medical codes observed at the 𝑡-th admission, following conventions used in 
previous temporal healthcare modeling work [2], [4], [6]. 

The objective is to predict a label vector 𝑦 ∈ {0,1}|𝐷|, where 𝐷 is the set of diagnosis 
codes, for a future admission 𝑡 + 1, given past clinical events. However, for single-visit 
patients 𝑇! = 1 , there are no temporal labels, making them unsuitable for traditional 
supervised learning pipelines [1], [3], [9]. 

3.2. Multi-Aspect Pretraining Module 
To address this challenge, we propose a self-supervised pretraining module that predicts 

diagnosis codes solely from lab test features collected within the same visit. Inspired by multi-
aspect learning approaches [11], [17], our method treats lab results as the input and diagnosis 
codes as the supervisory signal. 

The core prediction is formulated as in Eq. (1). 

𝒚" = 𝝈%𝑴𝑳𝑷(𝒙𝒕𝑳),, (1) 
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where 𝒙𝒕𝑳 ∈ {𝟎, 𝟏}|𝑳| is the multi-hot lab result vector, 𝑡, |𝐿| is the number of lab items, and 𝜎 
denotes the sigmoid activation function. For multi-visit patients, we apply an aggregation 
function across visits, following strategies similar to multi-visit feature integration [18]: 

To extend the pretraining framework to multi-visit patients, we introduce an aggregation 
mechanism over historical lab results see Eq. (2). 

𝒙$:&' =3𝒙𝒕𝑳
𝑻

𝒕)𝟏

, (2) 

where the logical OR operation ⋁ consolidates the lab feature vectors across all 𝑇 visits into 
a unified representation. Subsequently, diagnosis predictions are generated using Eq. (3). 

𝒚" = 𝝈%𝑴𝑳𝑷4𝒙𝟏:𝑻𝑳 5,, (3) 

This unified approach ensures that the pretraining procedure is consistently applicable 
to both single-visit and multi-visit patient records. 

The optimization objective employs a binary cross-entropy loss defined as Eq. (4). 

𝓛𝒑𝒓𝒆𝒕𝒓𝒂𝒊𝒏 = −8[𝒚𝒊	𝐥𝐨𝐠	𝒚"𝒊 + (𝟏 − 𝒚𝒊)	𝐥𝐨𝐠(𝟏 − 𝒚"𝒊)]
|𝑫|

𝒊)𝟏

, (4) 

where 𝒚 ∈ {𝟎, 𝟏}|𝑫| is the ground-truth diagnosis label vector, and |𝑫| is the cardinality of the 
diagnosis code set. The pretraining loss is minimized across all patients in the training dataset, 
enabling the model to learn robust associations between lab features and diagnostic outcomes. 

3.3. Integration with Downstream Tasks 
After pretraining, the learned lab-based representation 𝒉𝒕𝑳 is extracted and integrated 

into downstream models by concatenating it with the latent output 𝒐𝒕 of a baseline predictive 
architecture, a strategy adapted from modular plug-in frameworks [10], [19]. We define the 
combined feature representation as Eq. (5). 

𝒐𝒕2 = 𝒐𝒕𝒉𝒕𝑳, (5) 

where ∥ denotes the vector concatenation operator, producing a composite embedding that 
merges general clinical features with lab-derived signals. 

The final prediction is then obtained through a task-specific classification layer as in Eq. 
(6). 

𝒚"𝒕 = Classifier(𝒐𝒕2), (6) 

3.4. Advantages of the Proposed Method 
Compared to previous works that depend on heavy transformer architectures [10], [13] 

or complex graph constructions [9], [11], MPLite offers: 
• Modularity: Seamlessly integrates with various models without architectural changes. 
• Scalability: Supports both single-visit and multi-visit records, addressing data sparsity 

gaps. 
• Efficiency: Maintains a low computational footprint due to its lightweight MLP design. 

By focusing on lab result integration, a clinically significant yet underused feature [17], 
[18], MPLite delivers strong improvements across multiple predictive healthcare tasks. 

3.5. Algorithmic Workflow 
We present the detailed algorithmic pipeline for MPLite’s pretraining and integration, 

outlining the steps required to incorporate the pretrained lab-based module into downstream 
clinical prediction tasks. 

 
Algorithm 1. MPLite Pretraining and Integration 
INPUT:  𝑿: Electronic Health Record (EHR) sequences, 𝒚: Diagnosis label vectors, 𝒙𝑳: 
Lab result vectors. 
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OUTPUT: Trained pretrained module for integration into downstream predictive models 
1: For each admission 𝒕, extract the multi-hot lab result vector 𝒙𝒕𝑳 from the EHR dataset 
2: If the patient has multiple admissions 𝑻 > 𝟏, apply the integration function over 

historical lab vectors as defined in Equation (2) to construct 𝒙$:&'  
3: Feed the integrated (or single-visit) lab vector 𝒙𝒕𝑳  or 𝒙𝟏:𝑻𝑳   into the multilayer 

perceptron (MLP) to estimate diagnosis predictions using Eq. (1) or (3) 
4: Compute the binary cross-entropy loss (Eq. (4)) between predicted and true diagnosis 

labels, and update the MLP’s parameters through gradient-based optimization 
5: Upon completion of pretraining, freeze the MLP parameters to retain the learned lab-

to-diagnosis mappings for subsequent integration 
6: Extract the lab-informed encoder output 𝒉6𝑳 as an additional embedding vector for 

downstream models 
7: Concatenate the pretrained embedding 𝒉6𝑳  with the downstream model’s latent 

representations prior to the classification layer 
8: Fine-tune the full downstream model, including the integrated pretrained embeddings, 

using the original objective function specific to the target clinical prediction task. 

4. Results and Discussion 
This section presents the experimental setup, datasets, implementation details, 

evaluation metrics, and a critical discussion of the results. 

4.1 Experimental Setup 
All experiments were conducted on a high-performance computing system equipped 

with two AMD EPYC 9254 24-core processors, 528 GB of RAM, and four Nvidia L40S 
GPUs. The software stack included Python 3.10, TensorFlow 2.10, and PyTorch 2.3.1 with 
CUDA 12.3. We used a batch size of 64 and trained models for 100 epochs using the Adam 
optimizer, with a learning rate decay schedule from 1e-2 to 1e-5. 

The datasets used were MIMIC-III and MIMIC-IV, two publicly available EHR datasets 
widely used in predictive healthcare modeling [1], [3]. Specifically, MIMIC-III was split into 
6000/493/1000 for training, validation, and testing, respectively, while MIMIC-IV was 
randomly sampled to match the size for comparability, following the protocol used in prior 
studies such as Tian et al. [22]. 

4.2 Initial Data Analysis 
Table 1 summarizes the dataset characteristics. Notably, only ~16% of MIMIC-III 

patients have multiple visits, while ~84% are single-visit records, which are often excluded in 
conventional supervised learning settings [4], [9]. This imbalance motivated the development 
of MPLite, aiming to leverage lab results even from single-visit records. 

Table 1. Summary of key characteristics of the MIMIC-III and MIMIC-IV datasets, including the number of total, multi-visit, and 
single-visit patients, as well as the number of medical codes and lab test items used in the experiments. 

Dataset Total Patients Multi-visit Patients Single-visit Patients Medical Codes Lab Items 
MIMIC-III 46,520 7,537 38,983 4,880 697 
MIMIC-IV 85,155 ~10,000 (sampled) ~75,000 Similar scale Similar 

4.3 Performance Evaluation 
We evaluated the framework on two main tasks: 

• Diagnosis prediction (multi-label classification), and 
• Heart failure prediction (binary classification). 

Evaluation metrics included weighted-F1 (w-F1 Score), Recall-10, Recall-20, area under 
the ROC curve (AUC), and F1 score, which are standard in healthcare predictive modeling 
[4], [6], [9]. 

Table 2. Comparative performance results (mean and standard deviation) for baseline models and the proposed MPLite-enhanced 
models on diagnosis prediction (multi-label) and heart failure prediction (binary) tasks, evaluated on MIMIC-III and MIMIC-IV 

datasets. 
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Models Dataset Pretrain w-F1 Score (%) Recall-10(%) Recall-20(%) AUC F1 Score (%) 
GRU MIMIC-III No 17.82 31.56 33.64 80.54 68.93 

GRU+MPLite MIMIC-III Yes 19.58 33.82 35.97 82.01 70.56 
Dipole MIMIC-III No 14.66 28.73 29.44 82.08 70.35 

Dipole+MPLite MIMIC-III Yes 18.27 30.91 32.97 83.56 71.53 
GRU MIMIC-IV No 18.37 32.12 32.54 83.21 71.32 

GRU + MPLite MIMIC-IV Yes 20.42 34.56 36.87 84.73 72.94 
 

Table 2 clearly shows that integrating MPLite consistently improves predictive 
performance across both datasets. For example, GRU + MPLite achieves a +1.76% increase 
in w-F1 and a +2.26% improvement in Recall-10 over the vanilla GRU on MIMIC-III, 
aligning with trends observed in earlier multi-aspect models like CGL [22] and MedGTX [23]. 

Moreover, AUC and F1 metrics for heart failure prediction also improve with MPLite 
integration, demonstrating generalization ability not only in multi-label classification but also 
in binary tasks, consistent with findings from models like RETAIN [6] and HiTANet [20]. 

4.4 Discussion of Key Findings 
The results strongly support our initial hypothesis: integrating multi-aspect pretraining 

using lab results enhances the predictive performance of EHR models, especially by 
leveraging underutilized single-visit data [1], [12]. 

The largest improvements were observed in recall metrics, reflecting better sensitivity to 
relevant diagnostic categories. This aligns with the theoretical foundation that auxiliary lab 
information enriches the representational space, improving the model’s robustness against 
sparse or imbalanced labels [4], [6]. 

Notably, the improvement in heart failure prediction demonstrates that the lab-diagnosis 
relationships learned during pretraining capture meaningful physiological signals that extend 
across tasks, similar to how transformer-based models like Med-BERT [19] leverage 
embeddings for transferability. 

4.5 Analytical Insights 
We identify several critical insights: 

• The lightweight MLP-based design enables MPLite to be computationally efficient, 
echoing the findings of MiME [12], while delivering predictive gains comparable to 
heavier architectures. 

• MPLite’s modularity allows it to function as a plug-and-play enhancer, transferable 
across neural architectures such as GRU, Dipole, and RETAIN [6], [9]. 

• Single-visit patients, historically excluded from sequence models [4], [9], contribute 
valuable training signals when lab result patterns are effectively leveraged. 
These findings suggest that future predictive healthcare models should systematically 

incorporate multi-aspect features to maximize both model performance and data utility, 
extending prior work on auxiliary data integration [22], [23]. 

5. Comparison 
To assess the contribution of MPLite, we compared its performance with several state-

of-the-art baseline models, including GRU and Dipole, across two major tasks: diagnosis 
prediction and heart failure prediction. 

As summarized in Table 2, the integration of MPLite consistently outperformed the 
original baselines across all key evaluation metrics. For instance, on the MIMIC-III dataset, 
GRU without pretraining achieved a weighted-F1 score of 17.82%, whereas GRU+MPLite 
improved to 19.58%, reflecting a relative improvement of +9.9%. Similarly, Dipole improved 
from 14.66% (baseline) to 18.27% (+24.6% relative gain) when integrated with MPLite. These 
improvements were accompanied by notable increases in Recall-10 and Recall-20, indicating 
that MPLite enhanced the models’ ability to capture relevant diagnostic codes effectively. 

On MIMIC-IV, GRU+MPLite improved w-F1 Score from 18.37% to 20.42% (+11.1% 
relative gain), and Recall-10 from 32.12% to 34.56%. Across both datasets, the area under the 
ROC curve (AUC) also improved for heart failure prediction, indicating better binary 
classification performance. 



Journal of Machine Intelligence in Healthcare 2025 (April), Vol. 1, No. 1, Ariyanto and Ekawati.  19 of 21 
 

 

Compared to prior state-of-the-art methods such as G-BERT, HiTANet, and GRAM, 
which focus heavily on embedding-based or transformer-based architectures, MPLite offers 
a simpler, lightweight plug-in module that can be integrated into existing architectures without 
requiring modifications to the main model. This modularity ensures computational efficiency 
while still delivering competitive and in many cases superior predictive gains, especially when 
leveraging underutilized single-visit patient data. 

Overall, the comparison confirms that MPLite provides a measurable and meaningful 
improvement over both baseline and advanced models, demonstrating its value as a flexible 
and effective enhancement for clinical predictive tasks. 

6. Conclusions 
This paper proposed MPLite, a lightweight multi-aspect pretraining framework that 

leverages lab result data to enhance the predictive performance of machine learning models 
on electronic health records (EHR). Through comprehensive experiments on the MIMIC-III 
and MIMIC-IV datasets, we demonstrated that MPLite consistently improves diagnostic and 
heart failure prediction tasks across a variety of baseline models, with notable gains in 
weighted-F1 score, recall, and AUC metrics. These findings support our initial hypothesis 
that integrating auxiliary features like lab results, even from single-visit records, can 
significantly enrich medical concept representations and strengthen downstream predictive 
tasks. 

The synthesis of results confirms that MPLite functions as an effective plug-in module, 
improving model generalizability without requiring major architectural changes or extensive 
retraining. This directly addresses the research objective of maximizing underutilized single-
visit data, advancing the state of the art in predictive healthcare modeling. 

The implications of this research extend to practical healthcare applications, where better 
risk prediction can aid clinicians in early intervention, resource allocation, and personalized 
care strategies. Additionally, the modular design of MPLite allows for broad adaptability 
across diverse models, making it a valuable tool in both academic research and clinical 
deployment settings. 

However, this study has limitations. MPLite’s current design relies on the availability of 
high-quality lab test data, which may not always be present in all clinical environments. Future 
research should explore extending the framework to incorporate other modalities, such as 
unstructured clinical notes or imaging data, and investigate dynamic proxy tasks that can adapt 
to emerging healthcare challenges. Furthermore, assessing the real-world clinical impact of 
MPLite in prospective trials would provide important validation beyond retrospective 
datasets. 
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