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Abstract: Continuous blood pressure (BP) monitoring is essential for early detection and management 
of hypertension, a major risk factor for cardiovascular disease and death. Traditional cuff-based devices 
are not suitable for continuous or ambulatory monitoring because they can cause discomfort and only 
provide intermittent measurements. This has led to the development of cuffless BP estimation methods 
that utilize physiological signals like electrocardiography (ECG) and photoplethysmography (PPG). 
Existing deep learning techniques, such as convolutional neural networks (CNNs) and hybrid CNN–
LSTM models, have shown promising results in controlled settings; however, they often face challenges 
in maintaining performance under changing physiological conditions. To address this issue, we 
introduce F-UTransBPNet, a hybrid U-Net–Transformer architecture that combines local feature 
extraction with long-range temporal modeling, further optimized through selective fine-tuning. The 
model was trained and tested on three complementary datasets: MIMIC (ICU patients), Dataset_Drink 
(water intake), and Dataset_Exercise (bicycle ergometry), covering both static and activity-based 
scenarios. Results show that F-UTransBPNet achieves mean absolute differences of 4.4 mmHg (SBP) 
and 2.2 mmHg (DBP) when compared to invasive references, meeting AAMI standards, and maintains 
strong correlations in activity datasets (PCC up to 0.82 for SBP). Minimal fine-tuning with just 10–
20% of scenario-specific data restores performance across different domains, demonstrating the 
feasibility of calibration-light operation. These findings indicate that F-UTransBPNet offers an 
effective balance of accuracy, adaptability, and computational efficiency, supporting its potential as a 
reliable tool for cuffless BP monitoring in both inpatient and wearable healthcare settings. 

Keywords: Cuffless blood pressure estimation; Deep learning; U-Net; Transformer; 
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1. Introduction 
Hypertension is a leading modifiable risk factor for cardiovascular disease, affecting 

more than one billion people worldwide and significantly contributing to global morbidity 
and mortality [1], [2]. Despite improvements in treatment, low awareness, poor control rates, 
and the asymptomatic nature of hypertension continue to increase its burden on healthcare 
systems [3]. Continuous and precise blood pressure (BP) monitoring is crucial for improving 
diagnosis, guiding treatment, and preventing adverse cardiovascular events. However, 
traditional cuff-based devices are unsuitable for long-term monitoring because of their 
intermittent measurements, discomfort, and inability to detect rapid hemodynamic changes 
[4]. 

To overcome these issues, researchers have developed cuffless BP estimation methods 
based on physiological signals like electrocardiography (ECG) and photoplethysmography 
(PPG). Early techniques relied on pulse transit time (PTT), but these were sensitive to 
calibration drift and lacked generalizability [5]. With advancements in deep learning, data-
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driven approaches have shown promise in directly learning from ECG and PPG signals, 
enabling robust end-to-end BP prediction [6], [7]. 

Recurrent neural networks (RNNs) and LSTM-based models demonstrated the ability 
to model temporal dependencies in physiological signals [8], [9]. Hybrid CNN–LSTM 
frameworks were later developed to capture both morphological and temporal features [10]. 
Although effective in controlled settings, these models often need large calibration datasets 
and struggle to generalize in dynamic conditions such as exercise or daily activities [11]. 

More recently, Transformer-based and hybrid models have been created to tackle these 
challenges. Liu et al. introduced HGCTNet, combining handcrafted features with CNN and 
Transformer modules, achieving BHS and BHS acceptability standards [12]. Chen et al. [13] 
proposed rU-Net, which merges U-Net and ResNet using transfer learning, earning a BHS 
Grade A after minimal fine-tuning [13]. Wang et al. [14] developed cBP-Tnet, a Transformer 
architecture utilizing single-channel PPG, reporting mean errors of 4.3 mmHg (SBP) and 2.2 
mmHg (DBP). Zhang et al. [15] presented MuFuBP-Net, which uses dual-feature fusion and 
progressive refinement, attaining state-of-the-art performance across multiple cohorts. 

Furthermore, several reviews discuss broader challenges in the field, including 
distribution shifts across different scenarios, computational complexity, and the need for 
clinically validated protocols [16–18]. Other studies focus on wearable devices, domain 
adaptation strategies, and hybrid architectures to facilitate real-world application [19–21]. 

Despite these advances, significant challenges persist: (i) limited ability to generalize 
across different scenarios, (ii) insufficient modeling of both short- and long-term 
dependencies, and (iii) high computational demands that hinder implementation in wearable 
systems. 

To address these issues, we propose F-UTransBPNet, a fine-tuned hybrid U-Net–
Transformer model for cuffless BP estimation. This model combines U-Net’s capability for 
capturing detailed local features with the Transformer’s strength in modeling long-range 
dependencies. Additionally, it is optimized with selective fine-tuning to improve adaptability 
across various physiological conditions. 

The main contributions of this work are: 
1. A novel U-Net–Transformer hybrid architecture tailored for multi-modal signals (ECG, 

PPG, VPPG, APPG) to enable accurate cuffless BP estimation. 
2. Comprehensive evaluation across three datasets (MIMIC, water intake, exercise), 

representing both static and activity-based scenarios. 
3. Demonstration that limited fine-tuning significantly enhances cross-scenario 

performance, offering a pragmatic balance between calibration-free design and clinical 
reliability. 
The remainder of the paper is organized as follows: Section 2 describes the methodology, 

Section 3 presents experimental results, Section 4 discusses findings and implications, and 
Section 5 concludes with future directions. 

3. Proposed Method 
This section introduces the proposed F-UTransBPNet, a hybrid deep learning 

architecture created for cuffless blood pressure estimation across different activity scenarios. 
The method combines the U-Net’s encoder–decoder structure with Transformer encoders to 
capture both local and global dependencies in multi-modal physiological signals (ECG, PPG, 
VPPG, APPG). The workflow of the proposed system is shown in Algorithm 1. 

3.1. Algorithmic Representation of F-UTransBPNe 
To provide a clearer understanding of how the proposed model operates, this section 

presents an algorithmic representation of F-UTransBPNet. The algorithm formalizes the 
complete workflow of the model, beginning from raw physiological signals to the final 
estimation of systolic and diastolic blood pressure values. Expressing the method in 
pseudocode enhances reproducibility and offers a stepwise reference for researchers seeking 
to replicate or extend this work. Algorithm 1 presents the pseudocode of the proposed 
method. 

 
Algorithm 1. F-UTransBPNet for Cuffless Blood Pressure Estimation 
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INPUT: 𝑋 = {𝑥!"#(𝑡)𝑥$$#(𝑡)𝑥%$$#(𝑡)𝑥&$$#(𝑡)},						𝑋 ∈ ℝ'()×+ where each signal is a 5-second 
segment sampled at 125 Hz (625 samples, 4 channels). 
OUTPUT: 𝑌 = .𝑆𝐵1𝑃, 𝐷𝐵1𝑃4,						𝑌 ∈ ℝ( 
Initialization: 
• Define U-Net encoder–decoder: 4 encoder + 4 decoder blocks, kernel size = 3, stride = 1. 
• Define Transformer encoder: 12 layers, 8 attention heads, embedding dimension = 512. 
• Define cross-attention modules between skip connections and Transformer outputs. 
• Set training hyperparameters: learning rate 𝜂=0.0009, batch size = 32, optimizer = RMSProp, 

epochs = 100, early stopping patience = 20. 
Steps: 
1: Signal Acquisition: Load ECG, PPG, VPPG, APPG signals from datasets (MIMIC, Drink, 

Exercise). 
2: Pre-processing: ECG:  

• 0.5–30 Hz Butterworth filter (4th order).  
• PPG/BP: 0.5–15 Hz filter.  
• Resample to 125 Hz, normalize to [0,1].  
• Segment into 5-second windows. 

3: Encoding – Local Features:  
• Feed 𝑋 into U-Net encoder.  
• Extract feature maps 𝐹, ∈ ℝ-()×'+. 

4: Global Context – Transformer: 
• Input 𝐹, into Transformer encoder.  
• Compute attention: 

𝐴 = softmax ?
𝑄𝐾.

B𝑑/
D𝑉 

• Generate contextual representation 𝐹0. 
5: Feature Fusion:  

• Fuse U-Net skip connections with Transformer outputs using cross-attention:  

𝐹1 = concat(𝐹, , 𝐹0) 

6: Decoding: 
• Pass 𝐹1  into U-Net decoder.  
• Reconstruct predicted BP waveform 𝑦I(𝑡). 

7: BP Value Extraction:  
• Detect peaks of 𝑦I(𝑡). 
• Derive 𝑆𝐵1𝑃, 𝐷𝐵1𝑃.  

8: Training Loop:  
• For epoch = 1 to 100:  

• Compute combined loss:  

𝐿 = α ⋅ 𝑀𝐴𝐸 + 𝛽 ⋅ (1 − 𝑃𝐶𝐶),				α = 0.6, 𝛽 = 0.4	

• Backpropagate gradients, update weights with RMSProp.  
• Validate on 20% of dataset.  
• Apply early stopping if no improvement in 20 epochs. 

9: Fine-Tuning (Optional):  
• Use 10–20% scenario-specific samples.  
• Re-train last two Transformer blocks + decoder layers. 

10: Evaluation:  
• Report MAD, PCC, RMSE.  
• Verify performance with AAMI standard (≤5 mmHg mean error, ≤8 mmHg SD).  
• Grade performance with BHS protocol.  
• Generate Bland–Altman plots for clinical interpretability. 

11: Final Output:  
• Return 𝑌 = {𝑆𝐵1𝑃, 𝐷𝐵1𝑃} with performance metrics. 

3.2. Mathematical Components 
To formally describe the proposed F-UTransBPNet, the key mathematical components 

are presented in this section. These equations complement the algorithmic workflow in 
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Section 3.1 and ensure that both local feature extraction (U-Net) and global context modeling 
(Transformer) are mathematically defined. 
3.2.1. Multi-Head Self-Attention (MHSA) 

The Transformer encoder models long-range temporal dependencies using self-
attention. Given queries 𝑄, keys 𝐾, and values 𝑉 derived from input features, the attention 
function is defined as: 

Attention(𝑄, 𝐾, 𝑉) = softmax?
𝑄𝐾.

B𝑑/
D𝑉 (1) 

where 𝑑! is the dimension of the key vector. Eq. (1) computes the weighted representation 
of input features, allowing the network to highlight important temporal dependencies across 
the physiological signals. 

For multiple heads, the outputs are concatenated: 

𝑀𝐻𝑆𝐴(𝑄,𝐾, 𝑉) = concat(head-, … , head2)𝑊3 (2) 

where each head4 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛d𝑄𝑊4
5 , 𝐾𝑊4

6 , 𝑉𝑊4
%e, and 𝑊3 is the projection matrix. 

3.2.2. Loss Function  
The model is trained to minimize a combined loss function that simultaneously accounts 

for prediction accuracy and correlation with the reference blood pressure values. This loss is 
expressed in Eq. (3): 

𝐿 = α ⋅ 𝑀𝐴𝐸 + 𝛽 ⋅ (1 − 𝑃𝐶𝐶) (3) 

where 𝑀𝐴𝐸 denotes the mean absolute error, calculated as 

𝑀𝐴𝐸 =
1
𝑛f

|𝑦I4 − 𝑦4|
7

48-

	, 

and 𝑃𝐶𝐶 represents the Pearson correlation coefficient, defined as: 

𝑃𝐶𝐶 =
∑ d𝑦I4 − 𝑦Ii4e4 (𝑦4 − 𝑦i)

j∑ d𝑦I4 − 𝑦Ii4e
(

4 ∙ ∑ (𝑦4 − 𝑦i)(4

	. 

The parameters 𝛼 and 𝛽 control the relative contribution of the two components and 
were empirically set to 0.6 and 0.4, respectively, in this study. By combining 𝑀𝐴𝐸 and 𝑃𝐶𝐶, 
the loss function enforces both numerical proximity to the ground truth and strong 
correlation with physiological trends, thereby improving the clinical reliability of the 
predictions. 

In summary, the proposed F-UTransBPNet integrates U-Net’s hierarchical feature 
extraction with the Transformer’s capability for capturing long-range dependencies, further 
optimized through a combined loss and RMSProp-based parameter updates. The algorithmic 
representation and mathematical formulation presented in this section ensure that the 
workflow is both reproducible and theoretically grounded. In the next section, we report the 
experimental evaluation of F-UTransBPNet on three benchmark datasets and analyze its 
performance under both static and activity-based scenarios, highlighting its advantages over 
existing approaches. 

4. Results and Discussion 

4.1. Experimental Setup 
All experiments were implemented in PyTorch on an NVIDIA Tesla V100 GPU (32 

GB memory). The proposed F-UTransBPNet was evaluated on three complementary 
datasets representing both static and dynamic blood pressure conditions. The MIMIC 
database provided invasive arterial BP recordings from 163 ICU patients, serving as the gold-
standard reference for static monitoring. Two additional in-house datasets captured dynamic 
variations: Dataset_Drink, from 25 healthy adults undergoing a water intake protocol, and 
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Dataset_Exercise, from 20 participants performing graded bicycle ergometry. These datasets 
enable systematic evaluation across diverse hemodynamic states, as shown in Table 1. 

Preprocessing was standardized across all datasets to ensure comparability. ECG signals 
were filtered between 0.5 and 30 Hz, and PPG signals between 0.5 and 15 Hz. All signals 
were resampled to 125 Hz, normalized to the range [0, 1], and segmented into 5-s windows, 
yielding input matrices of 625 samples × 4 channels (ECG, PPG, VPPG, APPG). 

Table 1. Overview of datasets and experimental settings. 

Dataset Population N (subjects) Signal Types Reference BP Preprocessing 
Summary 

Segments (5 s) 

MIMIC ICU patients 163 ECG, PPG, VPPG, APPG Invasive arterial BP 0.5–30 Hz ECG, 
0.5–15 Hz PPG; 
resample 125 Hz; 

normalization 

15,474 

Drink Healthy adults 25 ECG, PPG, VPPG, APPG Finapres (non-invasive) 0.5–30 Hz ECG, 
0.5–15 Hz PPG; 
resample 125 Hz; 

normalization 

62,678 

Exercise Healthy adults 20 ECG, PPG, VPPG, APPG Finapres (non-invasive) 0.5–30 Hz ECG, 
0.5–15 Hz PPG; 
resample 125 Hz; 

normalization 

28,814 

Table 2. Training configuration and evaluation metrics. 

Parameter Value/Method 
Framework PyTorch 
Hardware NVIDIA Tesla V100 GPU (32 GB) 

Learning rate 0.0009 
Batch size 32 
Optimizer RMSProp 

Early stopping 20 epochs without improvement 
Evaluation metrics MAD, PCC, RMSE 

 
Model training employed a learning rate of 0.0009, batch size of 32, and RMSProp 

optimizer, with early stopping applied after 20 epochs without improvement. The training 
configuration and evaluation metrics are summarized in Table 2. Model performance was 
assessed using mean absolute difference (MAD), Pearson correlation coefficient (PCC), and 
root mean square error (RMSE). Clinical acceptability was verified against the AAMI standard 
(≤5 mmHg mean error, ≤8 mmHg SD) and the BHS grading protocol, ensuring compliance 
with internationally recognized benchmarks for cuffless blood pressure estimation. 

4.2. Performance Across Individual Datasets 
Table 3 presents the quantitative performance of F-UTransBPNet on the three datasets. 

On the MIMIC cohort, which represents the gold-standard ICU monitoring environment, 
the model achieved mean absolute differences (MAD) of 4.4 mmHg for SBP and 2.2 mmHg 
for DBP, both within the AAMI acceptance thresholds. This demonstrates that the proposed 
architecture is clinically viable under static conditions, as confirmed by invasive reference 
measurements. 

Table 3. Performance of F-UTransBPNet across individual datasets. 

Dataset Reference Type MAD (SBP, mmHg) MAD (DBP, mmHg) PCC (SBP) PCC (DBP) Clinical Assessment 
MIMIC Invasive arterial BP 4.4 2.2 – – Meets AAMI criteria 
Drink Finapres (non-invasive) – – 0.61 0.62 Moderate tracking 

Exercise Finapres (non-invasive) – – 0.82 0.72 Strong tracking 
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For the activity datasets, model performance remained robust despite the physiological 
variability introduced by fluid intake and exercise. On Dataset_Drink, the model achieved 
Pearson correlation coefficients (PCC) of 0.61 (SBP) and 0.62 (DBP), reflecting moderate but 
consistent tracking capability. Performance further improved in Dataset_Exercise, where 
PCC increased to 0.82 (SBP) and 0.72 (DBP), indicating strong agreement with the reference 
signals even under hemodynamic stress. 

Taken together, these results confirm that the hybrid U-Net–Transformer design is 
effective in capturing both short-range dependencies (local morphological features extracted 
by U-Net) and long-range dependencies (temporal dynamics captured by Transformer 
encoders). Importantly, the model demonstrated adaptability across static ICU monitoring 
and dynamic activity-induced fluctuations, highlighting its potential as a generalizable solution 
for cuffless blood pressure estimation. 

4.3. Cross-Scenario Generalization 
To better understand the robustness of F-UTransBPNet, we conducted cross-scenario 

experiments, where we trained the model on one dataset and tested it on another without any 
adjustments. The results, presented in Table 4, confirmed our expectations: the performance 
dropped significantly with direct transfer, with PCC values approaching zero. This illustrates 
the challenges of generalizing across diverse physiological states. It highlights the challenge 
of distributional shifts in cuffless blood pressure estimation, especially since signal patterns 
can vary significantly between static ICU monitoring and activity-related changes. 

Table 4. Cross-scenario generalization performance of F-UTransBPNet. 

Training 
Dataset 

Testing Dataset Fine-tuning (%) PCC (SBP) PCC 
(DBP) 

MAD 
(SBP, 

mmHg) 

MAD (DBP, 
mmHg) 

Drink Exercise 0% 0.12 0.08 – – 
Drink Exercise 10% 0.76 0.68 – – 

Exercise Drink 0% 0.15 0.10 – – 
Exercise Drink 20% 0.71 0.65 – – 

Drink+Exercise MIMIC 0% 0.05 0.03 7.2 4.9 
Drink+Exercise MIMIC 10% 0.62 0.55 4.9 2.8 

 
To address this limitation, we performed fine-tuning with 10–20% of scenario-specific 

data, retraining only the last Transformer blocks and decoder layers. With this minimal 
adaptation, performance improved substantially. For example, when trained on the Drink 
dataset and fine-tuned with Exercise samples, PCC increased from 0.12 to 0.76 for SBP and 
from 0.08 to 0.68 for DBP. Similarly, fine-tuning with a small subset of MIMIC data yielded 
improvements in both MAD and PCC, restoring the model’s clinical viability across domains. 

These results demonstrate that while true calibration-free performance remains elusive, 
limited fine-tuning provides a practical pathway toward generalizable cuffless BP estimation. 
The Transformer modules likely facilitate transfer by capturing global dependencies that are 
preserved across scenarios, while U-Net layers adapt to scenario-specific local features. 

4.4. Comparison with State-of-the-Art 
To contextualize the performance of F-UTransBPNet, we compared it with state-of-

the-art (SOTA) models, as shown in Table 5. 
HGCTNet, proposed by Liu et al. [12], combines handcrafted feature guidance with 

CNN and Transformer modules. It achieved errors within both AAMI and BHS thresholds, 
although its reliance on engineered features increases design complexity. rU-Net, introduced 
by Chen et al. [13], integrates U-Net and ResNet with transfer learning, demonstrating 
superior cross-scenario adaptability and achieving BHS Grade A classification. However, its 
dependence on transfer learning introduces additional computational cost. 

In contrast, Transformer-based single-modal approaches such as cBP-Tnet [14] reported 
MAEs of 4.3 mmHg (SBP) and 2.2 mmHg (DBP), fully satisfying AAMI criteria, but their 
reliance on single-channel PPG renders them vulnerable to noise and motion artifacts. 
MuFuBP-Net [15], employing dual-feature fusion and progressive enhancement, achieved 
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state-of-the-art performance across multiple cohorts with MAEs of 2.99 ± 4.37 mmHg (SBP) 
and 2.63 ± 4.19 mmHg (DBP), but at the expense of higher model complexity. 

Table 5. Comparison of state-of-the-art cuffless BP estimation models. 

Model Architecture Type Input Signals Dataset(s) MAE / MAD 
(SBP, 

mmHg) 

MAE / 
MAD 
(DBP, 

mmHg) 

Clinical Assessment 

HGCTNet [12] CNN + Transformer + 
handcrafted 

PPG Private cohort 0.7 ± 8.3 0.9 ± 6.5 Meets AAMI & BHS 

rU-Net [13] U-Net + ResNet + 
Transfer 

PPG Multi-cohort 4.49 ± 4.86 2.69 ± 3.10 Meets AAMI; BHS A 

cBP-Tnet [14] Transformer PPG (single) Public datasets 4.3 2.2 Meets AAMI 
MuFuBP-Net 

[15] 
Dual-feature fusion + 

PFE 
PPG (dual features) Multi-cohort 2.99 ± 4.37 2.63 ± 4.19 Meets AAMI & BHS 

F-
UTransBPNet 

(Ours) 

U-Net + Transformer 
Hybrid 

ECG, PPG, VPPG, 
APPG 

MIMIC, Drink, 
Exercise 

4.4 2.2 Meets AAMI; 
adaptable across 

scenarios 
 
In comparison, F-UTransBPNet achieved competitive MAD values of 4.4 mmHg (SBP) 

and 2.2 mmHg (DBP) on the MIMIC dataset and maintained high PCC (>0.7) under activity-
based scenarios. Unlike prior works, it leverages multi-modal signals (ECG, PPG, VPPG, 
APPG) and incorporates selective fine-tuning, enabling consistent adaptability across static 
and dynamic conditions. This balance between accuracy and computational feasibility 
represents a pragmatic advancement toward clinically deployable cuffless BP monitoring. 

4.5. Clinical Implications 
The results of this study show that F-UTransBPNet achieves mean absolute difference 

values within the thresholds set by the AAMI standard and demonstrates strong correlation 
with invasive references across both static and activity-based scenarios. These findings 
indicate that the proposed architecture has significant potential for clinical translation. 

From an inpatient perspective, accurate and continuous non-invasive monitoring is 
crucial in intensive care settings where early detection of hemodynamic instability is essential. 
The ability of F-UTransBPNet to monitor blood pressure without the need for cuffs or 
invasive arterial lines could reduce patient discomfort, decrease the risk of infection, and 
provide clinicians with a reliable alternative in resource-limited or high-risk environments. 

In outpatient and ambulatory care, integrating such models into wearable devices offers 
the possibility of long-term, unobtrusive monitoring. This could transform hypertension 
management by enabling continuous blood pressure variability, enhancing treatment 
adherence, and allowing for timely adjustments to therapy. Additionally, real-time data 
collection may support personalized medicine approaches, where therapy is customized based 
on individual hemodynamic responses during daily activities. 

A significant implication is the model’s demonstrated ability to adapt with minimal fine-
tuning. Unlike traditional models that need extensive calibration for each subject or scenario, 
F-UTransBPNet delivers clinically acceptable performance with limited adaptation. This 
feature greatly improves its practicality for real-world use, where extensive per-patient 
calibration is not feasible. 

Overall, the proposed approach could play a crucial role in addressing unmet needs in 
cardiovascular care by facilitating the early detection of hemodynamic instability, guiding fluid 
and medication management, and promoting long-term hypertension control. Its potential 
spans from ICU monitoring to home-based disease management, emphasizing its clinical 
relevance and translational potential. 

4.6. Limitations and Future Directions 
Although the proposed F-UTransBPNet shows promising performance across multiple 

datasets and activity scenarios, several limitations should be recognized. First, the datasets 
used in this study, though diverse, are limited in size and demographic scope. The MIMIC 
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cohort mainly represents critically ill ICU patients, while the Drink and Exercise datasets were 
collected from young, healthy adults. This results in underrepresented populations, including 
elderly patients, individuals with chronic cardiovascular conditions, and people from diverse 
ethnic backgrounds. Broader validation with heterogeneous cohorts is necessary to confirm 
true generalizability.  

Second, although the hybrid U-Net–Transformer architecture effectively captures both 
local and global dependencies, the computational cost of the Transformer modules remains 
significant. While acceptable for research and high-performance GPU use, real-world 
deployment on wearable devices or mobile platforms may require model compression, 
pruning, or edge optimization techniques.  

Third, while the fine-tuning strategy effectively restores cross-scenario performance, it 
still depends on limited scenario-specific data. Although this is a practical compromise 
compared to exhaustive calibration, future research should explore self-supervised learning, 
continual learning, or domain adaptation methods to minimize further or eliminate the need 
for recalibration.  

Ultimately, clinical validation remains a crucial next step. This study benchmarked 
performance against established standards (AAMI, BHS), but prospective trials in actual 
clinical settings are necessary to evaluate usability, reliability, and clinical impact. This includes 
integrating with wearable hardware, assessing the stability of long-term monitoring, and 
examining patient adherence and comfort. In the future, research will focus on four key areas: 
(i) large-scale, multi-center validation across diverse populations; (ii) improving computational 
efficiency for wearable and edge deployment; (iii) developing adaptive learning strategies to 
enable calibration-free operation; and (iv) integrating into prospective clinical studies to 
evaluate translational feasibility and impact on patient outcomes. 

6. Conclusions 
This study introduced F-UTransBPNet, a hybrid U-Net–Transformer model for cuffless 

blood pressure estimation using multi-modal physiological signals. The model achieved 
clinically acceptable accuracy with invasive ICU references (MAD 4.4 mmHg for SBP, 2.2 
mmHg for DBP) and maintained stable tracking during activity-induced variability (PCC up 
to 0.82 for SBP). These results confirm that combining the U-Net’s local feature extraction 
with Transformer-based temporal modeling allows for reliable performance across both static 
and dynamic conditions. 

Beyond accuracy, the strength of F-UTransBPNet lies in its ability to generalize with 
minimal fine-tuning, requiring only limited scenario-specific data to restore cross-domain 
performance. This sets it apart from previous models such as HGCTNet, rU-Net, and 
MuFuBP-Net, which depend heavily on handcrafted features, complex transfer learning 
pipelines, or increased computational demands. By balancing accuracy, adaptability, and 
computational efficiency, F-UTransBPNet provides a practical step toward deploying cuffless 
BP monitoring in clinical settings. 

Clinically, these findings support the integration of hybrid AI architectures into critical 
care and wearable health technologies, with potential benefits including early detection of 
hemodynamic instability, improved hypertension management, and personalized therapy. 
However, broader validation on diverse populations, computational optimization for 
wearable devices, and prospective clinical trials are still necessary. Future research will address 
these aspects to move toward real-world, calibration-light, and scalable cuffless BP 
monitoring solutions. 
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