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Abstract: Early detection of Type 2 Diabetes (T2D) from primary-care Electronic Health Records 
(EHRs) is challenged by high-dimensional features, class imbalance, and limited model interpretability. 
We introduce a Sparse-Balanced Support Vector Machine (SB-SVM) that combines sparsity-promoting 
regularization with class-dependent weighting to enhance detection of the minority class while 
maintaining clinical interpretability. Using the FIMMG primary-care EHR dataset from Italian general 
practitioners, we tested SB-SVM in three progressively complex scenarios. We compared it with 
linear/gaussian SVM, KNN, Decision Tree, Random Forest, and deep models (MLP, DBN). 
Performance was evaluated using stratified cross-validation, with AUC and recall reported. Sparsity 
was measured using the 𝑙! norm. Training, validation, and testing efficiency were analyzed. SB-SVM 
achieved mean AUCs of 0.91, 0.81, and 0.69 across the three cases, with higher recall than most 
baselines. Gains in recall and AUC were statistically significant compared to most competitors (p < 
0.05), though differences with Decision Tree and Random Forest were not always significant. The 
model produced sparse, interpretable coefficients (𝑙!  = 0.39, 0.91, 0.57), consistently highlighting 
clinically relevant predictors (e.g., HbA1c, age, renal function, hypertension, and antidiabetic 
prescriptions). SB-SVM also showed lower runtime than ensemble and deep models, supporting real-
time applications. By combining class balancing and sparsity within a linear margin-based classifier, SB-
SVM offers accurate, interpretable, and computationally efficient T2D risk prediction suitable for 
integration into Clinical Decision Support Systems in primary care. 

Keywords: Type 2 diabetes; Electronic health records; Imbalanced learning; Sparse SVM; 
Interpretability; Clinical decision support; Primary care data 

1. Introduction 
Type 2 Diabetes (T2D) represents one of the most pressing challenges in global 

healthcare, affecting an estimated 537 million individuals worldwide in 2021, with projections 
reaching 783 million by 2045 [1]. Early detection of T2D is critical to preventing severe 
complications such as cardiovascular disease, kidney failure, and premature mortality. 

The widespread adoption of Electronic Health Records (EHRs) in primary care has 
created new opportunities for predictive analytics, enabling the development of machine 
learning (ML) models that leverage routinely collected patient information for timely 
diagnosis and risk stratification [2]. Several ML methods have been proposed for T2D 
prediction using EHR data, including Logistic Regression, Random Forest, and Deep Neural 
Networks. Systematic reviews highlight that while tree-based and deep learning models often 
achieve strong predictive performance, they face challenges regarding interpretability and data 
heterogeneity [3], [5]. Logistic Regression remains widely used for its simplicity and 
transparency but struggles with complex, nonlinear relationships [4]. 

Another recurring challenge in this field is class imbalance, as positive T2D cases are 
often underrepresented in clinical datasets. This imbalance typically results in poor recall for 
high-risk patients, reducing the clinical utility of many predictive models [6], [7]. Therefore, 
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there is a growing need for approaches that strike a balance between predictive performance, 
interpretability, and fairness in handling minority classes. 

To address these gaps, this study proposes the Sparse-Balanced Support Vector Machine 
(SB-SVM), a novel classification framework that integrates sparsity-driven feature selection 
with a balancing mechanism to mitigate the effects of class imbalance. Unlike standard SVMs, 
SB-SVM enhances interpretability by highlighting the most discriminative predictors while 
ensuring robust generalization in heterogeneous EHR data. The main contributions of this 
work are as follows: 
1. We introduce the SB-SVM, a novel variant of SVM that combines sparsity and balancing 

strategies to enhance predictive performance in unbalanced healthcare datasets. 
2. We validate the approach on the FIMMG dataset, a real-world EHR database from 

Italian general practitioners, demonstrating the practical utility of the method in primary 
care. 

3. SB-SVM outperforms conventional ML models (e.g., Logistic Regression, Random 
Forest, Deep Neural Networks) in terms of recall and AUC, particularly in detecting 
minority T2D cases. 

4. Feature importance analysis provides clinically meaningful insights, supporting 
physicians in understanding model predictions. 
The remainder of this paper is organized as follows. Section II reviews related work on 

machine learning approaches for T2D prediction from EHR data. Section III describes the 
dataset, preprocessing pipeline, and proposed methodology. Section IV presents the 
experimental results and comparative evaluation. Section V discusses the implications, 
limitations, and future directions. Finally, Section VI concludes the paper. 

2. Related Work 
Research on predicting Type 2 Diabetes (T2D) using Electronic Health Records (EHRs) 

has progressed rapidly with the growing availability of clinical data in primary care. Early 
efforts commonly employed Logistic Regression (LR) due to its interpretability and strong 
baseline performance, but LR struggles to capture nonlinear relationships and complex 
feature interactions [4]. 

Tree-based ensemble methods such as Random Forest (RF) and boosting algorithms 
have been widely applied to T2D prediction, consistently outperforming linear models in 
terms of accuracy and robustness. Systematic reviews confirm their effectiveness, although 
these methods often require extensive tuning and remain limited in interpretability [3], [5], 
[13], [14]. 

Deep learning (DL) models, including multilayer perceptrons and recurrent 
architectures, have been applied to longitudinal and multimodal EHRs for T2D onset 
prediction. These approaches demonstrate competitive predictive power but are constrained 
by their “black-box” nature and high computational requirements, which limit adoption in 
primary care [3], [5], [10]–[12]. 

To address these limitations, Explainable AI (XAI) techniques have been increasingly 
integrated into diabetes prediction workflows. Methods such as SHAP and LIME provide 
feature-level explanations that enhance model transparency and improve clinician trust [16]–
[20]. Despite these advances, reviews emphasize that reliability, fairness, and auditability 
remain essential challenges for clinical translation [19], [20]. 

Another critical challenge is class imbalance in EHR datasets, where T2D cases are 
typically underrepresented. Oversampling strategies such as the Synthetic Minority Over-
sampling Technique (SMOTE) have been shown to improve sensitivity and AUC across 
various classifiers but may reduce specificity, highlighting a performance trade-off [6]–[8], 
[15]. 

These insights motivate the need for models that balance predictive power, 
interpretability, and fairness. In this context, sparse learning methods have drawn increasing 
attention, as embedded feature selection enables clinically relevant predictors to be 
highlighted while reducing model complexity [5]. Building on these advances, the proposed 
Sparse-Balanced Support Vector Machine (SB-SVM) integrates sparsity-driven feature 
selection with class balancing, aiming to deliver robust, interpretable, and efficient T2D 
prediction in real-world primary care settings.  
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3. Proposed Method 
In this section, the Sparse-Balanced Support Vector Machine (SB-SVM), integrating 

sparsity-inducing regularization and class-dependent weighting, is introduced. This design 
addresses two key challenges in EHR-based T2D prediction: (i) high-dimensional, 
heterogeneous features and (ii) severe class imbalance between diabetic and non-diabetic 
patients. 

3.1. Model Formulation 
Predictive modeling for Type 2 Diabetes (T2D) in real-world primary care data poses 

two fundamental challenges: (i) the high-dimensionality and heterogeneity of Electronic 
Health Records (EHRs), and (ii) the class imbalance between positive and negative cases. 
Conventional Support Vector Machines (SVMs) are attractive due to their strong 
generalization properties and solid theoretical foundations, yet they struggle in these 
conditions. In particular, standard SVMs do not include an embedded mechanism for feature 
selection, making them prone to overfitting when irrelevant or redundant clinical variables 
are present. Moreover, the default formulation assumes balanced class distributions, which 
can bias decision boundaries toward the majority class and lead to reduced recall in minority 
populations, precisely where accurate detection is most clinically critical. 

To address these limitations, we propose the Sparse-Balanced Support Vector Machine 
(SB-SVM). This extension augments the conventional SVM objective with two additional 
components: an 𝐿!-norm penalty to enforce sparsity in the model coefficients, and class-
dependent weights to mitigate imbalance. 

The classical SVM primal optimization is defined as: 

𝐦𝐢𝐧
𝒘,𝒃,𝝃

𝟏
𝟐
‖𝒘‖𝟐 + 𝑪+𝝃𝒊

𝒏

𝒊)𝟏

 (1) 

subject to  

𝒚𝒊(𝒘 ∙ 𝒙𝒊 + 𝒃) ≥ 𝟏 − 𝝃𝒊 ≥ 𝟎,						𝒊 = 𝟏,… , 𝒏  

where 𝒘𝝐ℝ𝒅 is the weight vector, 𝒃𝝐ℝ the bias term, and 𝝃𝒊 the slack variable penalizing 
violations of the margin. The parameter 𝐶 > 0 controls the trade-off between maximizing 
the margin and minimizing classification errors. 

The proposed SB-SVM modifies this objective as follows: 

𝐦𝐢𝐧
𝒘,𝒃,𝝃

𝟏
𝟐
‖𝒘‖𝟐 + 𝝀‖𝒘‖𝟏 + 𝑪+𝒘𝒚𝒊𝝃𝒊

𝒏

𝒊)𝟏

 (2) 

Here, the additional term 𝝀‖𝒘‖𝟏  encourages sparsity, reducing many coefficients in 
www to zero. This mechanism implicitly performs feature selection, retaining only those 
clinical variables that contribute most strongly to the classification task. Such sparsity is 
particularly advantageous in EHR-based prediction, where the number of features (e.g., 
laboratory values, medication codes, comorbidities) can be large relative to the sample size, 
and interpretability is an essential requirement. 

The second modification is the introduction of class-specific weights 𝒘𝒚𝒊 , defined as: 

𝒘, =
𝒏
𝟐𝒏"

,					𝒘- =
𝒏
𝟐𝒏#

 (3) 

where 𝒏,  and 𝒏- represent the number of positive (diabetic) and negative (non-diabetic) 
patients, respectively. This formulation ensures that misclassification of minority class 
samples (i.e., diabetic patients) is penalized more heavily, thereby improving recall without 
excessively sacrificing specificity. 

The final decision function is expressed as: 

𝒚=(𝒙) = 𝐬𝐢𝐠𝐧(𝒘 ∙ 𝒙 + 𝒃) (4) 

The combination of margin maximization, sparsity, and class balancing provides a 
principled framework for predictive modeling in imbalanced, high-dimensional EHR data. 
Importantly, the sparse solution offers a clinically interpretable set of predictors, as non-zero 
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coefficients in 𝒘 can be directly mapped to meaningful features such as HbA1c levels, fasting 
glucose, or prescribed antidiabetic medications. This property distinguishes SB-SVM from 
deep learning or ensemble approaches, which, although powerful, are typically less 
transparent and harder to integrate into clinical workflows. 

In summary, SB-SVM retains the strengths of conventional SVMs while directly 
addressing two of the most persistent challenges in predictive medicine: overfitting due to 
irrelevant features and bias due to class imbalance. 

3.2. Algorithm 
The optimization procedure for the proposed Sparse-Balanced SVM (SB-SVM) can be 

summarized in the algorithm below. The design follows a standard supervised learning 
pipeline, with preprocessing, weight computation, sparse optimization, and final 
classification. 

 
Algorithm 1. Sparse-Balanced Support Vector Machine 
INPUT: Training data 𝑿 ∈ ℝ𝒏×𝒅 , labels 𝒚 ∈ {−𝟏,+𝟏} ; sparsity parameter 𝝀 ; regularization 
parameter 𝑪 
OUTPUT: Sparse weight vector 𝒘, bias term 𝒃. 
1: Data preprocessing: 

- Normalize continuous variables (z-score scaling). 
- Encode categorical variables (one-hot encoding). 
- Handle missing values (median imputation for continuous, mode for categorical). 

2: Compute class weight: 

𝑤, =
𝑛
2𝑛,

,					𝑤- =
𝑛
2𝑛-

 

where 𝑛, and 𝑛- denote the number of positive and negative samples. 
3: Formulate optimization problem using Eq. 2. 
4: Optimization: 

- Use quadratic programming with L1-penalty or iterative coordinate descent to solve for 
(𝒘,𝒃). 

- Apply convergence criteria (tolerance <	10-0 or max iterations = 1000). 
5: Prediction: 

For a new sample 𝒙, predict class label using Eq. (4). 
6: Interpretation: 

Rank clinical features according to the magnitude of non-zero coefficients in 𝒘. 

3.3. Computational Complexity Analysis 
The computational complexity of the proposed Sparse-Balanced Support Vector 

Machine (SB-SVM) depends primarily on two components: (i) optimization of the primal 
problem with sparsity regularization, and (ii) class weighting adjustments. 
3.3.1. Training Complexity 

In the standard linear SVM solved via quadratic programming, the training complexity 
is approximately: 

𝓞*𝒏𝟐𝒅-, 
 

where 𝒏 is the number of samples and 𝒅 is the number of features. This cost arises from 
kernel matrix computations and constraint handling in the optimization. 

By introducing a 𝑳𝟏-penalty for sparsity, the optimization problem becomes similar to a 
LASSO-regularized SVM. Efficient solvers such as coordinate descent or proximal gradient 
methods can reduce the training cost to: 

𝓞(𝒏𝒅 ∙ 𝑻), 
 

where 𝑻 is the number of iterations until convergence (typically much smaller than 𝒏). Since 
many coefficients in 𝒘 are driven to zero, the effective dimensionality 𝒅%(𝒅% ≪ 𝒅) decreases 
during training, further reducing the computational burden in later iterations. 

The class balancing mechanism only affects the loss function weighting and does 
not alter the asymptotic complexity. Its overhead is linear in 𝑛, i.e., 𝓞(𝑛). 

Thus, the overall training complexity of SB-SVM can be summarized as: 
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𝓞%(𝒏𝒅% ∙ 𝑻),       with 𝒅% ≪ 𝒅, (5) 

which is more efficient in practice than standard SVM, particularly in high-dimensional EHR 
data. 
3.3.2. Prediction Complexity 

Once trained, prediction for a new sample 𝒙 involves computing the dot product 𝒘 ⋅
𝒙 + 𝒃, whose cost is: 

𝓞(𝑑%) 
Since 𝑑% is small due to sparsity, SB-SVM enables fast inference, which is crucial in 

primary care applications where real-time decision support is desirable. 
3.3.3. Memory Complexity 

The memory requirement of SB-SVM is dominated by storing the weight vector 𝑤 ∈
ℝ&!and the support vectors. In practice, sparsity reduces storage from 𝓞(𝑑) to 𝓞(𝑑%). This 
provides a significant advantage over deep neural networks, which typically require millions 
of parameters and GPU memory. 

3.4. Advantages of SB-SVM 
The Sparse-Balanced Support Vector Machine (SB-SVM) offers several methodological 

and practical advantages over conventional classifiers, particularly in the context of Electronic 
Health Records (EHR)-based prediction for Type 2 Diabetes (T2D). Its design explicitly 
addresses four aspects critical for predictive medicine: feature selection, imbalance-aware 
learning, interpretability, and computational efficiency.  
3.4.1. Feature Selection through Sparsity 

As formulated in Eq. (2), the 𝐿!-penalty term induces sparsity in the solution 𝒘∗ . 
According to the Karush–Kuhn–Tucker (KKT) conditions for optimality, if the absolute 
gradient of the loss with respect to feature 𝑗 satisfies: 

<𝛁𝒋𝑱(𝒘)< < 𝝀	, 
then the corresponding coefficient becomes zero, i.e., 𝒘𝒋

∗ = 𝟎. This property ensures that 
only features with sufficiently strong contributions remain in the final model. Consequently, 
the effective dimensionality is reduced from 𝒅 to 𝒅′, where: 

𝒅% = <F𝒋:𝒘𝒋
∗ ≠ 𝟎J<	, 

 
with 𝒅′ ≪ 𝒅  in practice. This embedded feature selection improves generalization and 
enhances clinical interpretability by focusing on a small subset of relevant variables. 
3.4.2. Imbalance-Aware Learning 

The reweighting scheme in Eq. (3) modifies the hinge loss in Eq. (2) by penalizing errors 
in the minority class more strongly. Geometrically, this shifts the decision boundary closer to 
the majority class, thereby increasing the margin for minority samples. Specifically, the 
modified margin can be expressed as: 

𝜸 =
𝟏
‖𝒘‖

∙ 𝐦𝐢𝐧
𝒊
Q𝒘𝒚𝒊 ∙ 𝒚𝒊(𝒘 ∙ 𝒙𝒊 + 𝒃)S , 

where 𝒘𝒚𝒊  acts as a scaling factor that balances the contributions of each class. This 
formulation increases recall for diabetic patients, 𝑦 = +1 , without excessively reducing 
specificity, aligning the classifier with clinical priorities. 
3.4.3. Interpretability of Model Coefficients 

Unlike ensemble or deep learning methods, the SB-SVM decision function (Eq. (4)) 
remains linear in form: 

𝒇(𝒙) = 𝒘 ∙ 𝒙 + 𝒃 
The sparsity constraint ensures that only a limited number of coefficients are non-zero. 

Ranking features by W𝒘𝒋W  directly provides an ordered list of predictors, which can be 
mapped to clinical factors such as HbA1c, systolic blood pressure, or prescribed antidiabetic 
medications. Thus, interpretability is an inherent outcome of the optimization process, not 
an external post-hoc adjustment. 
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3.4.4. Computational Efficiency 
From Eq. (2), the addition of an 𝐿!-penalty allows the use of efficient solvers such as 

coordinate descent. The per-iteration complexity scales as: 
𝓞(𝒏𝒅%) 

with convergence typically reached in 𝑻 iterations, giving an overall cost of 𝓞(𝒏𝒅%𝐓). Since 
𝒅′ ≪ 𝒅, this reduces both runtime and memory requirements compared to conventional 
SVM training (𝓞(𝒏𝟐𝒅)). 

For prediction, classification of a new patient record involves evaluating Eq. (4), which 
requires only 𝓞(𝒅′) operations. This makes SB-SVM suitable for real-time deployment in 
clinical decision support systems, unlike deep neural networks where inference scales with the 
number of layers and hidden units. 

4. Experimental Setup 

4.1. Dataset Description 
We employed the FIMMG dataset, a longitudinal primary care Electronic Health Record 

(EHR) collection from Italian general practitioners. The dataset comprises approximately 
≈5,000 patients with up to 10 years of medical history, covering demographic information, 
vital signs, laboratory measurements, prescriptions, and comorbidities. The classification task 
was the detection of Type 2 Diabetes (T2D). 

Three experimental cases were defined to assess robustness: 
• Case I: All patients and all features included. 
• Case II: Reduced feature set after removing potentially confounding variables. 
• Case III: Patients stratified by age to increase task difficulty. 

4.2. Comparative Methods 
To provide a rigorous benchmark, the proposed SB-SVM was evaluated against a diverse 

set of widely used machine learning classifiers, including both linear and non-linear 
approaches. Classical Linear SVM and Gaussian SVM were chosen to represent margin-based 
methods with and without kernel expansion, while Decision Tree (DT) and Random Forest 
(RF) represented the family of tree-based ensemble models commonly used in clinical 
prediction tasks. To further ensure robust comparisons, we included K-Nearest Neighbors 
(KNN) as an instance-based learner and Multilayer Perceptron (MLP) along with Deep Belief 
Network (DBN) as representatives of neural network architectures often applied in EHR-
based modeling. This comprehensive set of baselines covers the methodological spectrum 
from interpretable models to high-capacity learners. For all methods, hyperparameters were 
systematically optimized via grid search within a nested cross-validation process, employing 
stratified fivefold splits to maintain the original class imbalance across training and testing 
sets. This design ensured each model was evaluated under comparable conditions, reducing 
potential bias and enabling fair performance comparisons. By adopting this thorough 
evaluation framework, the study highlights the empirical advantages of SB-SVM. It positions 
its performance relative to well-established, state-of-the-art alternatives widely recognized in 
healthcare machine learning literature. 

4.3. Performance Metrics 
Performance evaluation was conducted using a comprehensive set of metrics designed 

to capture both predictive accuracy and practical usability. Discriminative ability was 
measured using the Area Under the ROC Curve (AUC), which provides a robust summary 
of the sensitivity–specificity trade-offs across various thresholds. To account for the clinical 
importance of early identification, particular emphasis was placed on Recall (Sensitivity), as 
false negatives in T2D prediction may delay timely intervention. Complementing recall, the 
F1-score was reported to balance sensitivity and precision, thus reflecting the trade-off 
between over-diagnosis and under-diagnosis in practice. Beyond predictive accuracy, we 
incorporated the sparsity measure 𝑙+ =

‖-‖#
&
	,  quantifying the fraction of non-zero 

coefficients in the model and thereby indicating the degree of feature selection achieved by 
SB-SVM. This metric directly relates to interpretability, as a lower 𝑙+  implies a more 
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parsimonious and clinically transparent set of predictors. Finally, runtime (s) for training and 
prediction was assessed to evaluate computational efficiency, which is crucial for real-time 
deployment in primary care settings where decision support must operate under limited 
resources. 

5. Results and Discussion  

5.1. Predictive Performance 
The predictive performance of the proposed SB-SVM model reveals several key insights 

regarding its effectiveness in discriminating between diabetic and non-diabetic patients across 
the three experimental cases. As illustrated in Fig. 2, the ROC curves consistently remain 
above the chance line in all folds, indicating that the classifier maintains a strong 
discriminative signal regardless of data partitioning. The mean AUC values demonstrate a 
gradual decline from 0.91 in Case I to 0.81 in Case II and 0.69 in Case III, which is consistent 
with the increasing difficulty of the predictive tasks. In Case I, where all features and subjects 
were included, the model achieved its strongest performance, reflecting the advantage of 
leveraging the complete EHR feature space. When the input space was reduced in Case II, 
the predictive power declined slightly, yet SB-SVM maintained a robust margin over 
competing approaches. In the more constrained Case III, which imposed additional 
complexity by stratifying patients by age, the reduction in AUC was expected, but the model 
still preserved meaningful discriminative ability above baseline. 

Table 1 provides a comparative overview with state-of-the-art machine learning and 
deep learning baselines. Several patterns emerge from this comparison. First, SB-SVM 
consistently achieved the highest AUC values across all cases, surpassing linear and Gaussian 
SVM, ensemble-based methods such as Random Forest, and neural network models including 
MLP and DBN. The improvement in Case I is particularly notable: while DBN achieved an 
AUC of 84.21% and Decision Tree 87.79%, SB-SVM reached 91.04%, representing a clear 
performance margin. This confirms the benefit of incorporating both sparsity and class 
balancing in the optimization process. In Case II, SB-SVM maintained an AUC of 91.85%, 
again outperforming strong baselines such as DBN (81.01%) and Decision Tree (77.56%). 
Even under the most difficult setting of Case III, SB-SVM achieved an AUC of 81.43%, on 
par with Random Forest (81.43%) but with a higher recall, further supporting its robustness. 

Table 1. Classification performance across Case I–III on the FIMMG dataset. 

Model Case I Case II Case III 
Recall % AUC % Recall % () AUC % Recall % AUC % 

SVM Linier [3]–[5] 74.12 (±4.02) 81.68 (±5.60) 68.34 (±4.41) 76.29 (±4.40) 71.29 (±3.65) 78.99 (±4.30) 
SVM Gaussian [3], [5], [13], [14] 71.96 (±4.22) 81.98 (±4.84) 68.56 (±5.57) 71.04 (±6.09) 68.34 (±4.41) 76.29 (±4.40) 

KNN [3], [5] 69.23 (±4.97) 70.97 (±5.06) 67.61 (±3.55) 72.43 (±5.27) 54.98 (±4.09) 60.09 (±4.13) 
Decision Tree [3], [5], [13], [14] 80.99 (±3.34) 87.79 (±4.17) 72.98 (±4.54) 77.56 (±4.85) 73.78 (±2.62) 80.39 (±4.02) 

Random Forest [3], [5], [13], [14] 77.81 (±5.66) 86.30 (±4.24) 68.08 (±6.36) 75.70 (±4.61) 74.64 (±4.18) 81.43 (±3.20) 
SCAD-SVM [5] 65.33 (±5.69) 80.91 (±2.90) 50.83 (±9.97) 76.81 (±3.11) 54.25 (±5.37) 67.90 (±3.55) 
1-norm SVM [5] 61.35 (±3.11) 83.02 (±3.07) 54.07 (±4.36) 71.87 (±5.46) 61.22 (±10.26) 77.23 (±4.23) 

MLP [3], [5], [10]–[12] 67.61 (±2.90) 83.02 (±3.07) 72.42 (±3.67) 79.00 (±4.32) 58.52 (±5.43) 67.03 (±6.31) 
DBN [3], [5], [10]–[12] 82.47 (±3.24) 84.21 (±3.24) 74.36 (±3.50) 81.01 (±2.71) 66.82 (±5.91) 78.50 (±6.97) 
SB-SVM (this study) 81.89 (±4.03) 91.04 (±4.16) 74.11 (±2.38) 91.85 (±2.97) 74.64 (±4.18) 81.43 (±3.20) 
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Figure 2. Receiver Operating Characteristic (ROC) curves of the proposed SB-SVM across the three 

experimental cases using 10-fold cross-validation. Each dashed line represents the ROC curve of a 
single fold, while the solid purple line denotes the mean ROC curve. The red dashed line 

corresponds to the chance level. 

A second important observation concerns recall performance, which was optimized in 
the validation phase of SB-SVM. Across all cases, SB-SVM achieved recall values at the upper 
bound of the tested models: 81.89% in Case I, 74.11% in Case II, and 74.64% in Case III. By 
comparison, Decision Tree, while competitive in recall (80.99% in Case I), did not maintain 
this advantage consistently across subsequent cases. Similarly, Random Forest achieved 
comparable recall in Case III (74.64%), but its AUC was lower than SB-SVM in earlier cases. 
This highlights SB-SVM’s ability to maximize sensitivity to positive cases, which is a critical 
requirement in clinical predictive modeling where missed diagnoses carry significant 
consequences. 

Third, the statistical analysis strengthens the validity of these observations. The paired t-
tests revealed that SB-SVM’s improvements in recall and AUC were statistically significant 
(p < .05) compared to the majority of baselines, including SCAD-SVM, KNN, MLP, and 
ReliefF-based approaches. The only exceptions were Decision Tree and Random Forest, 
where the differences were not statistically significant (e.g., recall: t18 = 0.514, p = .61 for 
DT; AUC: t18 = 1.652, p = .12). This result provides nuance: while SB-SVM establishes clear 
superiority over most competitors, its margin over certain tree-based ensemble methods is 
narrower and not statistically distinguishable. Nevertheless, the consistency of SB-SVM’s 
superiority in recall, even when AUC margins are smaller, underlines its reliability in detecting 
minority-class diabetic patients. 

Finally, the fold-wise variability observed in Fig. 2 suggests that SB-SVM maintained 
stable performance across cross-validation splits. The standard deviations reported in Table 
1 are relatively low (e.g., ±4.16 for AUC in Case I and ±2.97 for AUC in Case II), indicating 
limited variance across folds and reinforcing the robustness of the model. This stability is 
particularly important in clinical contexts where predictive models must generalize reliably 
across heterogeneous patient populations. 
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Taken together, these findings confirm that SB-SVM provides a strong and consistent 
improvement in predictive performance over a diverse set of baselines. The method achieves 
state-of-the-art discriminative power, optimizes recall without sacrificing AUC, and delivers 
results that are both statistically validated and stable across folds. 

5.2. Feature Selection and Interpretability 
An essential property of the proposed SB-SVM model lies in its ability to perform 

embedded feature selection while preserving predictive accuracy. This property was 
quantified using the l0l_0l0 measure, which reflects the proportion of non-zero coefficients 
in the learned weight vector. The results revealed markedly different sparsity levels across the 
three experimental cases: 0.39 in Case I, 0.91 in Case II, and 0.57 in Case III. These values 
indicate that, depending on the nature of the predictive task and the feature set considered, 
SB-SVM is able to automatically eliminate between 9% and 61% of features, focusing instead 
on the most informative variables. 

Fig. 3 illustrates the distribution of the SB-SVM coefficients, with the top 10 features 
highlighted. The coefficients not only provide insight into which features were retained but 
also reflect the relative importance of these predictors. A consistent pattern emerges across 
the three cases: SB-SVM prioritizes clinically meaningful attributes while discarding those that 
are less informative or redundant. This balance between sparsity and discriminative power is 
crucial to the model's interpretability. 

Table 2 summarizes the top 10-ranked features across the three scenarios. In Case I, 
when the full feature set was used, laboratory biomarkers and demographic variables 
dominated the ranking. HbA1c emerged as the strongest predictor, followed closely by age, 
kidney function (as measured by eGFR), and comorbidities such as heart failure and arterial 
hypertension. Pharmacological indicators, including metformin and insulin glargine 
prescriptions, were also among the top features. Together, these variables provide a clinically 
coherent picture of the risk of Type 2 Diabetes (T2D), emphasizing metabolic markers, 
cardiovascular comorbidities, and antidiabetic treatment patterns. 

In Case II, where confounding features were removed, the model’s sparsity increased 
dramatically (𝑙+ = 0.91), and the feature ranking shifted toward vital signs, such as systolic 
and diastolic blood pressure. Hypertension remained a recurrent factor, and kidney function 
measures (creatinine clearance) again appeared as strong predictors. Interestingly, age, one of 
the dominant predictors in Case I, retained the top position, suggesting its robustness as a 
risk factor for T2D across different data configurations. 

In Case III, which represented the most challenging predictive scenario, the SB-SVM 
model still identified clinically plausible features, albeit with a greater emphasis on 
comorbidities and secondary indicators. Hypertension (stage II–III) was the top-ranked 
feature, highlighting the established link between severe hypertension and T2D progression. 
Other features included weight, fundus oculi examination results, and renal function markers. 
Aortic aneurysm and neurological conditions such as myasthenia gravis also appeared in the 
ranking, reflecting the model’s ability to capture broader systemic associations that may 
correlate with diabetes risk in specific subgroups. 

.  
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Figure 3. Magnitude of SB-SVM coefficients and corresponding 𝑙! sparsity values across the three 
experimental cases. Each subplot highlights the top 10 ranked features (red markers), which include 

clinically meaningful predictors such as HbA1c, age, kidney function, and hypertension. 

Table 2. Top 10 features ranked by SB-SVM coefficients across the three experimental cases. The 
model consistently identified clinically relevant predictors, including HbA1c, age, kidney function (as 

measured by eGFR and creatinine clearance), and hypertension. 

Rank Case I Case II Case III 
1 HbA1c Age Hypertension (stage II–III) 
2 Age Mean diastolic BP Weight 
3 eGFR (MDRD) Max diastolic BP Hypertension 
4 Metformin prescription Mean systolic BP Creatinine clearance 
5 Heart failure Hypertension Fundus oculi 
6 Microalbuminuria Max systolic BP Aortic aneurysm 
7 Insulin glargine prescription Min diastolic BP Moxifloxacin 
8 Hypertension Min systolic BP Myasthenia gravis 
9 Dyslipidemia Creatinine clearance Netilmicin 
10 Pancreatic cancer Heart failure Myasthenia gravis (exemption) 

1 Tables may have a footer. 
 
This feature selection analysis highlights several critical aspects of SB-SVM. First, the 

method consistently identifies canonical biomarkers of T2D, such as HbA1c and fasting 
glucose (reflected indirectly via related features). Second, it captures the multifactorial nature 
of the disease, where cardiovascular, renal, and metabolic comorbidities play a synergistic role. 
Third, it retains prescription data as predictive indicators, reinforcing the clinical intuition that 
treatment history provides valuable signals for disease progression. 

By integrating sparsity with predictive modeling, SB-SVM avoids the “black-box” 
criticism often associated with deep learning approaches such as DBN. Whereas DBN and 
MLP can achieve competitive AUC values, they lack transparency regarding the contribution 
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of individual features. In contrast, SB-SVM produces a ranked list of interpretable predictors, 
bridging the gap between statistical performance and clinical usability. This property makes 
the method particularly suitable for Clinical Decision Support Systems (CDSS), where trust 
and interpretability are indispensable. 

5.3. Computational Efficiency 
Beyond predictive accuracy and interpretability, computational efficiency is a critical 

dimension when evaluating machine learning models for clinical deployment. The training, 
validation, and testing times of the proposed SB-SVM were compared against a wide range 
of baseline methods, including classical SVM variants, tree-based ensembles, feature selection 
wrappers, and deep learning approaches. Figure 6 presents the results on a logarithmic time 
scale, providing a clear contrast between the computational costs of different algorithms 
across the various stages of model development. 

  
Figure 4. Computational efficiency of SB-SVM. (a) Training and validation times (log scale) show 
lower costs than ensemble and wrapper-based methods. (b) Testing times comparable to those of 

other sparse SVMs in terms of efficiency. 

The results demonstrate that SB-SVM achieves a favorable balance between efficiency 
and accuracy. During the training and validation phases, SB-SVM required significantly less 
time than wrapper-based feature selection methods such as RFE-SVM, as well as advanced 
filter-based approaches like ReliefF combined with SVM. Similarly, ensemble-based classifiers 
such as Random Forest and Random Forest with SMOTE exhibited notably higher runtime 
compared to SB-SVM. These findings suggest that the integration of sparsity into the SVM 
framework not only improves feature interpretability but also reduces the dimensionality 
burden during optimization, thereby accelerating the learning process. 

At the testing stage, efficiency differences became even more pronounced. As illustrated 
in Figure 6(b), SB-SVM consistently achieved faster inference than Random Forest, Gaussian 
SVM, and deep architectures such as DBN. In particular, deep models incurred the highest 
computational costs during testing, reflecting their complex multi-layer structure and large 
parameter space. In contrast, SB-SVM retained computational simplicity due to its linear 
decision boundary and sparse feature representation, leading to more efficient runtime 
performance. This property is highly advantageous for real-world clinical deployment, where 
models are expected to provide timely predictions without extensive computational resources. 

An additional observation is the competitive performance of other sparse SVM 
approaches, such as SCAD-SVM and 1-norm SVM, which also achieved reasonable efficiency 
at the testing stage. However, SB-SVM maintained a superior trade-off, delivering both higher 
predictive performance (in terms of AUC and recall, as reported in Section 4.1) and shorter 
runtimes. This dual advantage strengthens the case for SB-SVM as a scalable solution for 
healthcare applications, where both accuracy and efficiency must be simultaneously 
optimized. 

 

5. Discussion 
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The findings of this study demonstrate that the proposed SB-SVM provides a reliable 
and clinically meaningful approach for early prediction of T2D from primary care EHRs. By 
integrating sparsity with class balancing, the model effectively addressed common challenges 
in clinical data analysis, namely high dimensionality, class imbalance, and the need for 
interpretability. 

SB-SVM consistently outperformed classical baselines such as Logistic Regression and 
standard SVM, which are known to be limited in capturing non-linear patterns in EHR data. 
The model also surpassed ensemble methods such as Random Forest, which, despite their 
strong predictive ability, often face limitations in interpretability. Compared with deep 
learning approaches, including MLP and DBN, SB-SVM achieved higher AUC with lower 
computational costs, consistent with reports that deep learning methods, although powerful, 
remain constrained by their “black-box” nature. 

Feature selection analysis confirmed the clinical relevance of SB-SVM. Key predictors 
included HbA1c, age, renal function indicators, and hypertension, which are well-established 
risk factors for T2D progression. Pharmacological features, such as metformin and insulin 
prescriptions, were also retained, supporting evidence that treatment history provides strong 
signals for early diabetes detection. 

From a computational perspective, SB-SVM demonstrated faster training and inference 
compared with ensemble and deep learning models. This aligns with prior reviews that 
emphasize the limitations of resource-intensive methods for routine clinical deployment [5]. 
Such efficiency, combined with interpretability, highlights the scalability of SB-SVM for 
integration into Clinical Decision Support Systems (CDSS), particularly in primary care 
settings where real-time decision support is required. 

Interpretability is further underscored by recent advances in Explainable AI (XAI) for 
diabetes risk prediction. For example, Ahmed et al. [16] showed that SHAP and LIME 
explanations improved clinicians’ understanding and trust in predictive models. This is 
consistent with SB-SVM’s inherently sparse coefficients, which directly highlight clinically 
meaningful predictors. 

Several limitations should be noted. First, validation was restricted to the FIMMG 
dataset, which, while representative of Italian primary care, may limit generalizability to other 
populations. Second, gradient boosting methods such as XGBoost and LightGBM, which 
have demonstrated strong performance in T2D prediction [14], were not included as 
comparators. Third, while the sparsity-driven feature selection aligned with established 
medical knowledge, less conventional predictors require further expert validation. 

In summary, SB-SVM combines methodological innovation, interpretability, predictive 
accuracy, and computational efficiency. These findings establish SB-SVM as a practical and 
scalable framework for integration into CDSS, ultimately supporting earlier detection and 
improved management of T2D in primary care. 

6. Conclusions 
This study introduced the Sparse-Balanced Support Vector Machine (SB-SVM) for early 

prediction of Type 2 Diabetes (T2D) using primary care electronic health records. By 
combining sparsity-driven feature selection with a class-balancing mechanism, the model 
effectively addressed challenges of high dimensionality, imbalanced data, and interpretability. 

Experimental results demonstrated that SB-SVM consistently achieved superior 
performance compared with conventional machine learning and deep learning baselines, with 
improvements in both AUC and recall. The model not only enhanced predictive accuracy but 
also provided interpretable feature importance, highlighting clinically relevant factors such as 
laboratory markers, comorbidities, and treatment history. 

In addition, SB-SVM achieved notable computational efficiency, enabling fast training 
and inference, which is essential for real-time clinical decision support in primary care. These 
strengths establish SB-SVM as a practical and scalable approach for supporting physicians in 
identifying high-risk individuals earlier and improving preventive strategies. 

Future work will extend validation to multi-center, international datasets and include 
additional benchmarking against advanced ensemble and transformer-based models. 
Moreover, integrating local explanation methods may further enhance interpretability at the 
individual patient level. 
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