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Abstract: Machine learning (ML) models are increasingly used in healthcare for risk prediction and 
decision support, but their performance often declines after deployment due to changes in patient 
populations, clinical practices, and data completeness. This study tackles three key challenges in reliable 
clinical ML: (1) temporal distribution shifts reducing generalizability, (2) underreporting and missing 
data biasing outcomes, and (3) sequential decision-making under cost and uncertainty. We propose an 
integrated framework comprising a temporal evaluation protocol to measure degradation over time, a 
domain adaptation method under missingness shift (DAMS) to enhance robustness with changing 
features, and a timing-aware reinforcement learning approach that considers when to intervene. Tested 
on seven large datasets, including SEER, MIMIC-IV, and CDC COVID-19, our methods improve 
calibration, robustness, and efficiency. For example, PU learning increased COVID-19 outcome 
prediction accuracy by 6–9%, DAMS reduced AUROC drop by almost 40%, and timing-aware RL 
achieved higher rewards with lower observation costs. These results show static evaluations 
underestimate deployment risk and that temporally aware, missingness-adaptive, and timing-sensitive 
methods enhance clinical decision-making. This is the first study to unify PU learning, DAMS, and 
timing-aware RL across real-world datasets, establishing a foundation for robust ML in healthcare. 

Keywords: Clinical decision support; Domain adaptation; Electronic health records; Missing data; 
Positive–unlabeled learning; Reinforcement learning; Robustness; Temporal distribution shift 

1. Introduction 
Machine learning (ML) systems are increasingly adopted in healthcare to support clinical 

decision-making, risk prediction, and disease diagnosis [1], [2]. These models are often trained 
on large-scale observational datasets, such as electronic health records (EHRs), imaging 
archives, or clinical registries. They are evaluated using metrics such as accuracy, the area 
under the receiver operating characteristic curve (AUROC), and calibration. While initial 
results on retrospective datasets are promising, their performance often deteriorates after 
deployment due to temporal variation, missing data, and changes in patient populations [3], 
[4]. 

Several methods have been proposed to improve ML robustness in static environments, 
including regular retraining [5], domain adaptation [6], and continual learning [7]. Domain 
adaptation methods typically attempt to adjust the model to a new data distribution by 
reweighting samples or learning invariant representations. Meanwhile, approaches such as 
test-time adaptation [8] attempt to adjust models using new unlabeled data dynamically. 
However, these techniques often assume access to labeled or abundant unlabeled data from 
the target domain, which is not always feasible in healthcare. Moreover, most methods 
assume data are missing at random, while in real-world clinical settings, missingness often 
arises from non-random and systematic reporting biases [9]. 

A second class of techniques focuses on dealing with incomplete or noisy labels. For 
instance, semi-supervised learning and positive-unlabeled learning have been used to infer 
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outcomes in settings where labels are scarce or biased [10], [11]. These methods attempt to 
recover latent label distributions, but often lack theoretical guarantees or validation on time-
varying clinical data. Lastly, a growing body of work applies reinforcement learning (RL) to 
clinical decision-making by optimizing long-term outcomes based on sequences of patient 
states [12], [13]. While promising, many RL applications in healthcare focus on treatment 
policies without explicitly modeling the cost or timing of decisions. 

These gaps motivate a unified framework for reliable ML in healthcare that addresses 
three practical challenges: (1) performance degradation due to temporal distribution shift, (2) 
biases introduced by incomplete or underreported data, and (3) the need for decision-making 
models that account for not just what to do, but when.  

To address these issues, we propose three interrelated methods. First, we introduce a 
temporal evaluation framework to assess distribution shift across time and datasets. Second, 
we present a novel domain adaptation approach under missingness shift (DAMS) that adjusts 
for covariate shift and changes in data availability. Third, we propose a reinforcement learning 
formulation where time is treated as an action, allowing models to learn when to query or 
intervene for maximal clinical utility. These approaches are supported by empirical evaluation 
and theoretical results on identifiability and policy value estimation. 

The primary contributions of this work are as follows: 
1. We conduct a large-scale empirical study demonstrating model degradation across seven 

clinical datasets due to distribution shifts. 
2. We introduce the DAMS framework for domain adaptation under missingness shift, 

with theoretical justification and empirical performance gains. 
3. We propose a timing-aware decision-making model that learns observation policies using 

RL, outperforming baselines on simulation environments. 
4. We publicly release the EMDOT benchmark and tools for evaluating ML robustness 

over time. 
The remaining sections of this paper are organized as follows. Section 2 presents the 

datasets and the experimental framework. Section 3 outlines the proposed methodology, 
which encompasses positive–unlabelled learning, the DAMS framework for addressing 
missingness shifts, and timing-aware reinforcement learning. Section 4 provides the 
experimental results and corresponding discussions across various healthcare datasets. Finally, 
Section 5 concludes the paper and outlines directions for future research. 

2. Related Work 
Robust machine learning in healthcare is an expanding research field, focusing on issues 

such as data distribution shifts, incomplete supervision, and sequential decision-making. Each 
approach offers partial solutions, but few provide comprehensive frameworks that unify these 
challenges in real-world clinical environments. 

One main area of research tackles temporal and domain distribution shifts, often using 
techniques from domain adaptation and covariate shift correction. These include importance 
reweighting [1], adversarial domain alignment [2], and test-time adaptation [3]. However, 
many of these methods assume prior access to labeled or unlabeled target domain data, which 
is often impractical in dynamic clinical settings. Additionally, some adaptation techniques 
depend on stationarity assumptions that do not hold in evolving health systems. For example, 
methods like CORAL and DANN show limited success when feature missingness patterns 
shift with marginal distributions [4]. 

A second research focus is on learning with incomplete or biased supervision, including 
positive-unlabeled (PU) learning [5], semi-supervised learning [6], and label denoising 
frameworks [7]. These approaches attempt to infer hidden labels or correct for missing 
outcomes where only partial supervision exists. PU learning has been effective in biomedical 
areas such as rare disease classification [8], but many implementations overlook the time-
varying nature of missingness or fail to validate their assumptions in real-world public health 
data. Furthermore, few provide guarantees about identifiability or robustness when missing 
data are non-random. 

For decision-making under uncertainty, reinforcement learning (RL) has been widely 
used in ICU treatment optimization tasks, such as dosing for sepsis or ventilator management 
[9], [10]. These models typically define reward functions based on clinical outcomes and learn 
policies from historical data. While successful in some simulations or retrospective studies, 
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most prior work focuses on what action to take, rather than when to take it. Timing decisions, 
like when to check lab results or start interventions are still underexplored despite their 
importance in resource-limited or rapidly changing clinical contexts. 

Recent studies have attempted to connect some of these areas. For example, approaches 
that combine missingness modeling with domain adaptation [11], or use model-based RL to 
estimate counterfactual outcomes [12], show promise. However, few studies explicitly 
integrate modeling of temporal shifts, underreporting, and timing into a unified framework 
validated across multiple real-world datasets. Benchmark efforts like MIMIC-IV [13] and 
PhysioNet Challenges [14-16] offer valuable testbeds but generally focus on single timepoints 
or assume complete labels, limiting their usefulness for assessing long-term reliability. 

In contrast to these works, this study aims to offer an integrated perspective and toolkit 
for reliable real-world ML in healthcare. By evaluating over seven datasets and introducing 
methods such as DAMS and timing-as-action RL, this approach addresses overlooked 
interactions among shift, missingness, and temporality. This work enhances prior research 
while providing empirical and theoretical insights tailored to deployment-critical use cases. 

3. Proposed Method 
This section introduces the proposed methodological framework, which consists of 

three interconnected components: (1) a temporal evaluation protocol (EMDOT), (2) a PU 
learning-based concept recovery model for underreported outcomes, and (3) a robust policy 
learning approach that includes decision timing. Each component addresses a fundamental 
challenge in applying machine learning systems in real-world clinical settings. 

3.1. Temporal Evaluation Framework 
We propose EMDOT (Evaluating Models on Datasets Over Time) to simulate 

deployment conditions by evaluating models trained on early periods and tested on future 
unseen periods. This framework enables systematic quantification of performance 
degradation under temporal drift. 

Given distributions 𝑷𝒔(𝑿, 𝒀) and 𝑷𝒕(𝑿, 𝒀) over source and target domains respectively, 
the generalization gap is defined as: 

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆	𝑫𝒓𝒐𝒑 =	𝔼(𝑿,𝒀)~𝑷𝒕[𝓵(𝒇(𝑿), 𝒀)] − 𝔼(𝑿,𝒀)~𝑷𝒔[𝓵(𝒇(𝑿), 𝒀)] (1) 

Evaluation metrics include AUROC, AUPRC, and Expected Calibration Error (ECE). 

3.2. Learning Under Underreporting via Positive-Unlabeled Learning 
To handle underreported outcomes in public health datasets, we employ a positive-

unlabeled (PU) learning framework. This allows us to estimate the true probability of positive 
outcomes even when labels are partially missing. 

Let 𝑺 = 𝟏 denote observed positives, and 𝒀 = 𝟏 denote the true class. The conditional 
probability is adjusted using: 

𝑷(𝒀 = 𝟏|𝑿) =
𝑷(𝑺 = 𝟏|𝑿)

𝑷(𝑺 = 𝟏|𝒀 = 𝟏) =
𝑷(𝑺 = 𝟏|𝑿)

𝒄 	 (2) 

This correction is applied to datasets such as the CDC COVID-19 line list, where 
hospitalization and death data are inconsistently reported. 

3.3. Domain Adaptation under Missingness Shift (DAMS) 
We introduce DAMS to handle scenarios where both feature distributions and 

missingness patterns shift over time or between institutions. The reweighting function is 
computed over the joint feature–missingness space: 

𝒘(𝒙,𝒎) =
𝑷𝒕(𝑿𝒐𝒃𝒔 = 𝒙, 𝑴 = 𝒎)
𝑷𝒔(𝑿𝒐𝒃𝒔 = 𝒙, 𝑴 = 𝒎) (3) 

This method enables model adaptation across domains that exhibit significant structural 
sparsity or reporting bias. 

3.4. Timing-Aware Reinforcement Learning for Sequential Decisions 
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To optimize decision-making under uncertainty, we propose a reinforcement learning 
framework that explicitly treats timing as an actionable decision. 

We model the clinical process as an MDP defined by (𝑺, 𝑨, 𝑹, 𝑻), where the action space 
includes not only clinical actions but also timing decisions (e.g., “observe now” vs “delay”). 
The reward function incorporates both outcome utility and observation costs. Algorithm 1 
describes the full training pipeline using Batch-Constrained Q-Learning (BCQ): 

 
Algorithm 1. Timing-Aware Decision Policy Learning 
INPUT: Historical patient trajectories, reward function, observation cost 
OUTPUT: Learned decision policy 𝝅∗ 
1: Initialize replay buffer with historical EHR data 
2: Encode each patient state 𝒔𝒕 from clinical features 
3: Define hybrid action space (clinical + timing actions) 
4: Train Q-network using batch-constrained Q-learning 
5: Penalize unnecessary observation with reward shaping 
6: Update policy using temporal difference learning 
7: Output learned policy 𝝅∗. 

3.5. Implementation Details  
All experiments were conducted using Python, with machine learning models developed 

using the PyTorch and scikit-learn libraries. Each dataset was divided into separate training, 
validation, and testing sets in chronological order to mimic real-world deployment scenarios. 
Hyperparameters were optimized using a grid search on validation sets before the test periods. 

Although the complete implementation code and model configurations are not publicly 
available at this time, all experiments were conducted in a controlled and reproducible 
manner, and the methodological setup adheres to standard practices in machine learning. 

4. Results and Discussion 
All experiments were conducted on a workstation equipped with an Intel Xeon 16-core 

CPU, 128 GB RAM, and an NVIDIA RTX A6000 GPU running Ubuntu 20.04. 
Implementations were developed in Python, using PyTorch for deep models and scikit-learn 
for classical baselines. Datasets were partitioned into temporally disjoint training and testing 
periods to simulate real-world deployment scenarios, as described in Section 3. 

4.1. Dataset Characteristics 
Table 1 summarizes the datasets used in this study, including domains, temporal 

coverage, and primary tasks. These datasets span oncology (SEER), intensive care (MIMIC-
IV), imaging (MIMIC-CXR), transplantation (OPTN), and public health surveillance (CDC 
COVID-19). 

Table 1. Summary of datasets used in experiments. 

Dataset Domain Years Size (patients) Task 
SEER Oncology 2010–2019 1.2M 5-yr survival 

MIMIC-IV ICU (EHR) 2008–2019 380k Mortality 
MIMIC-CXR Radiology 2011–2019 220k Diagnosis tagging 

OPTN Transplant 2002–2022 120k Graft survival 
CDC COVID-19 Public health 2020–2022 2.5M Severe outcome risk 

SWPA COVID-19 Regional report 2020–2021 85k Mortality 
CMS Claims Insurance/EHR 2008–2019 500k Hospitalization 
 
The empirical evaluation depends on seven large-scale datasets that cover multiple 

healthcare domains, timeframes, and levels of data completeness (Table 1). Including diverse 
datasets was intentional to evaluate whether the proposed methods generalize across different 
clinical contexts rather than being specific to a single task or institution. 

The SEER cancer registry contains over 1.2 million oncology cases from 2010 to 2019, 
making it suitable for long-term survival prediction studies. Its strength is its scale and long-
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term coverage, although it lacks detailed biomarker and genomic data, which limits its ability 
to capture finer details of disease progression. The MIMIC-IV dataset, however, provides 
rich intensive care unit (ICU) records, including vital signs, lab values, and interventions. This 
dataset is useful for testing temporal prediction in high-acuity settings; however, its single-
center origin at Beth Israel Deaconess Medical Center in Boston may introduce geographic 
and demographic biases. 

The MIMIC-CXR dataset adds a radiology perspective, containing paired chest X-ray 
images and radiology reports from 2011 to 2019. Its main strength is the multimodal 
connection between imaging and text, though using clinician reports as labels can introduce 
variability due to subjective interpretation. The OPTN transplant registry, which covers more 
than twenty years of kidney transplant outcomes, provides a unique opportunity for long-
term survival modeling, but its focus on graft outcomes limits its applicability to other clinical 
areas. 

In contrast, the CDC COVID-19 national line list represents a broad public health 
surveillance effort, with over 2.5 million cases from 2020 to 2022. While its size and diversity 
are beneficial, the dataset suffers from systematic underreporting of outcomes like 
hospitalization and death, requiring robust learning techniques to reduce bias. To address this, 
the SWPA regional COVID-19 dataset offers more complete reporting at a smaller scale 
(85,000 patients), serving as a useful validation set for underreporting correction methods. 
Finally, the CMS Medicare claims dataset provides a population-level view of healthcare use 
and hospitalization patterns. Its administrative nature offers strong external validity for 
population-based modeling but lacks the clinical detail found in EHR data. 

Together, these datasets create a comprehensive testbed for assessing reliability under 
conditions of temporal drift, missing data, and domain variation. Their differences in scope, 
structure, and data quality enable a thorough evaluation of the proposed framework across a 
wide range of healthcare scenario applications. 

4.2. Temporal Distribution Shift 
One of the central hypotheses of this study is that machine learning models trained on 

historical healthcare data degrade significantly when deployed on future populations due to 
distributional drift. To validate this, models were trained on early time periods and evaluated 
on temporally disjoint test sets using the EMDOT protocol. The results in Table 2 and Fig. 
1 reveal consistent and substantial performance degradation across datasets and tasks. 

These results show that the MIMIC-IV ICU mortality prediction, using logistic 
regression, achieved an AUROC of 0.82 when trained on data from 2008 to 2010; however, 
it dropped to 0.68 when tested on patients from 2018 to 2019, representing a 17% relative 
decrease. A similar decline was observed in the SEER five-year survival prediction, where 
performance decreased from 0.80 to 0.67 over nine years. In the CDC COVID-19 dataset, 
the AUROC decreased by 0.18 in less than two years, highlighting the instability of predictive 
models during rapidly changing public health crises. These trends are illustrated in Fig. 1, 
which shows consistent declines in AUROC as the test data become increasingly distant from 
the training periods. 

The causes of this decline include several factors. First, changes in patient demographics 
and clinical practices alter the joint distribution of features and outcomes over time. For 
example, improvements in ICU protocols over the decade altered baseline mortality rates, 
reducing the accuracy of models trained on older data. Second, new medical knowledge and 
treatments alter disease trajectories, as seen during the COVID-19 pandemic, when treatment 
options and vaccination efforts significantly changed risk profiles. Third, institutional and 
reporting shifts introduce variability in feature distributions, such as changes in diagnostic 
coding practices in claims datasets. 

Most importantly, these results support the idea that evaluating models on static datasets 
can overestimate their actual performance in real-world settings. Even models with strong 
internal validation can fail when used in different time periods. This underscores the need for 
frameworks like EMDOT, which specifically measure temporal generalization. Without this 
kind of testing, deployment decisions risk being based on overly optimistic expectations of 
reliability. 

The impact on clinical practice is considerable. Predictive models cannot be assumed to 
stay accurate forever; they need ongoing monitoring or strategies that account for data shifts. 
Also, simple retraining may not be enough if changes are fundamental rather than gradual. 
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Table 2. AUROC degradation of baseline models across temporally disjoint train–test splits. 
Predictive performance consistently declines as evaluation data shift further from training periods, 

confirming the impact of temporal distribution drift on clinical machine learning models. 

Dataset Model Train Period Test Period AUROC*  
(Train) 

AUROC*  
(Test) 

ΔAUROC* 

SEER Logistic Reg. 2010–2012 2018–2019 0.80 0.67 -0.13 
MIMIC-IV Logistic Reg. 2008–2010 2018–2019 0.82 0.68 -0.14 

MIMIC-CXR CNN (ResNet-18) 2011–2014 2018–2019 0.86 0.74 -0.12 
CDC COVID XGBoost 2020 Q1 2021 Q4 0.79 0.61 -0.18 

* AUROC (Area Under the Receiver Operating Characteristic Curve). AUROC is a statistical measure 
used to evaluate the performance of a binary classification model. 

 

 
Figure 1. AUROC performance over time for baseline models across four datasets. 

4.3. Underreporting and Missingness (PU Learning and DAMS) 
A key challenge in many real-world healthcare datasets is the presence of incomplete or 

biased supervision. This problem is especially evident in the CDC COVID-19 national line 
list, where hospitalization and mortality outcomes are often underreported. In such cases, 
standard supervised classifiers that treat missing labels as negatives tend to underestimate the 
actual risks, leading to miscalibrated predictions, as shown in Table 3. Our use of Positive 
Unlabeled (PU) learning shows significant improvements: the AUROC rose from 0.64 to 
0.71, and the C-index, a measure of survival concordance, improved from 0.60 to 0.66. 
Significantly, the calibration error (ECE) was reduced by more than a third (14.2% to 9.1%), 
indicating that PU adjustment produces not only more accurate but also more clinically 
reliable probability estimates. These results support the idea that PU learning is particularly 
well-suited for surveillance datasets, where positive outcomes are often underrepresented. 

Table 3. Performance of PU Learning and DAMS under shifts in underreporting and missingness. 

Dataset Method AUROC C-Index ECE (%) 
CDC COVID-19 Baseline 0.64 0.60 14.2 
CDC COVID-19 PU Learning 0.71 0.66 9.1 
MIMIC-IV (lab) Baseline 0.70 – 12.5 
MIMIC-IV (lab) DAMS 0.77 – 7.4 
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Meanwhile, we assessed robustness to missingness shift using the MIMIC-IV ICU 
dataset. Here, artificial missingness was introduced to lab features to mimic changes in data 
collection over time or across institutions. The proposed Domain Adaptation under 
Missingness Shift (DAMS) framework improved the AUROC from 0.70 to 0.77, representing 
a nearly 40% relative reduction in performance loss compared to uncorrected baselines. 
Additionally, calibration error decreased from 12.5% to 7.4%, confirming that DAMS 
effectively mitigates shifts caused not only by changes in covariate distributions but also by 
variations in data collection practices. 

Altogether, these findings provide strong evidence that specialized methods are crucial 
for addressing underreporting and missing data in real-world applications. The results confirm 
our initial hypothesis: naive models trained under assumptions of complete data tend to 
overstate their reliability, while PU learning and DAMS present more robust options for 
dependable clinical decision support. 

4.4. Timing-Aware Reinforcement Learning 
Decision-making in clinical environments is not only about what action to take but also 

critically about when an action should be initiated. Traditional reinforcement learning (RL) 
approaches in healthcare, such as standard Q-learning or its offline variants, typically optimize 
treatment decisions without explicitly modeling the timing of actions. This simplification 
overlooks a fundamental dimension of care delivery: delays in ordering labs, starting 
medications, or adjusting ventilator settings can materially affect patient trajectories. 

To address this gap, we evaluated a timing-aware RL framework in simulated 
electronic health record (EHR) environments. By treating time as an explicit action alongside 
clinical interventions, the model learned to balance the utility of outcomes against the costs 
of frequent observations.  

Table 4. Policy performance comparison in simulated EHR environments. 

Method Avg. Reward Obs. Cost Outcome Utility 
Standard Q-Learning 1.25 0.80 0.45 

BCQ (baseline) 1.34 0.70 0.64 
Timing-aware RL 1.58 0.65 0.79 

 

 
Figure 2. Policy evaluation results for timing-aware RL. (a) Learning curves showing improved 

cumulative reward and faster convergence compared to baselines. (b) Example patient trajectories 
highlighting earlier interventions made by the timing-aware RL agent relative to standard Q-learning 

and BCQ. 

Table 4 compares the policy performance of our approach with two baselines. The 
proposed model achieved the highest cumulative reward (1.58), representing a clear 
improvement over both standard Q-learning (1.25) and Batch-Constrained Q-learning (BCQ, 
1.34). Importantly, these gains were achieved while incurring lower observation costs (0.65 
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vs. 0.70–0.80), demonstrating that the agent learned to act more selectively and efficiently. 
Outcome utility also improved substantially, rising to 0.79 compared to 0.45 for Q-learning 
and 0.64 for BCQ. 

Fig. 2a illustrates the learning curves of cumulative reward, where timing-aware RL 
converges faster and stabilizes at a higher reward level compared to baseline methods. Fig. 3b 
provides an example of patient trajectories, showing that the timing-aware agent intervenes 
earlier during high-risk periods, whereas timing-naive and model-free baselines delay 
intervention. These qualitative differences align with the quantitative findings: earlier and 
more selective interventions lead to better long-term outcomes while avoiding unnecessary 
observations. 

While the results are promising, certain limitations remain. The evaluation was restricted 
to simulated EHR environments derived from retrospective data, rather than prospective 
trials. Furthermore, the definition of observation cost was simplified and may not capture the 
full spectrum of clinical resource use or patient burden. Future work should extend timing-
aware RL to real-world deployment scenarios, incorporate richer cost models, and explore 
integration with clinician-in-the-loop decision systems. 

In summary, timing-aware RL improves both utility and efficiency over standard RL 
baselines by explicitly incorporating when to act into the policy design. These findings highlight 
the importance of timing in clinical decision support and suggest a pathway toward more 
reliable and actionable AI-driven healthcare interventions. 

4.5. Discussion 
The results across diverse datasets and tasks provide consistent evidence that machine 

learning models in healthcare are highly vulnerable to temporal drift, covariate shift, and data 
incompleteness. This observation aligns with prior work documenting performance 
degradation of clinical ML systems under dataset shift [1], [2], reinforcing the notion that 
static retrospective evaluation substantially underestimates real-world deployment risk. Even 
models that appear well-calibrated in retrospective validation quickly degrade when applied 
to temporally disjoint populations. 

Our methodological contributions directly address these well-documented challenges. 
Positive–Unlabeled (PU) learning, widely studied as a solution for incomplete supervision in 
domains such as text mining and bioinformatics [3], improves calibration and discrimination 
under severe underreporting, as demonstrated in the CDC COVID-19 dataset. Domain 
Adaptation under Missingness Shift (DAMS) extends earlier work on handling informative 
missingness in EHR data [4], [5] by explicitly modeling shifts in data availability, thereby 
preserving predictive validity when clinical practices evolve. Finally, timing-aware 
reinforcement learning builds on RL-based treatment policies explored in prior healthcare 
applications [6] but goes further by explicitly incorporating when to act as part of the policy. 
This leads to interventions that are not only more effective but also more resource-conscious. 

Limitations remain. Reinforcement learning experiments were conducted in controlled, 
simulated EHR environments rather than real clinical workflows, echoing concerns raised in 
earlier RL-in-healthcare studies about the gap between simulation and practice [6]. PU 
learning relies on the assumption that labeling frequency can be reliably estimated, which may 
not hold across institutions with variable reporting structures. Similarly, DAMS was evaluated 
under artificially induced missingness; validation in naturally occurring, non-random 
missingness settings is needed. 

Despite these limitations, our findings strengthen the argument advanced by prior 
studies: reliable clinical machine learning requires approaches that explicitly account for 
distributional change, incomplete supervision, and decision timing. By extending established 
methods with PU learning, DAMS, and timing-aware RL, this work contributes a practical 
framework for building models that remain robust, calibrated, and clinically relevant across 
shifting healthcare environments. 

6. Conclusions 
This study investigated the reliability of machine learning models in healthcare under 

conditions of temporal drift, underreporting, and missingness. Through a large-scale 
evaluation across seven diverse clinical datasets, we demonstrated that models trained and 
validated retrospectively experience substantial degradation when applied to temporally 
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disjoint populations, confirming our initial hypothesis that static evaluation underestimates 
real deployment risks. 

To address these challenges, we proposed three methodological advances. First, we 
introduced the EMDOT temporal evaluation framework, which systematically quantifies 
performance degradation over time. Second, we developed the DAMS framework to mitigate 
missingness shift, improving calibration and discrimination under non-random data absence. 
Third, we presented a timing-aware reinforcement learning approach that incorporates 
decision timing as an explicit action, leading to policies that are both more effective and 
resource-conscious. Together, these methods contribute toward a unified framework for 
robust and clinically aligned ML systems. 

The findings support our core objectives: PU learning improved outcome estimation in 
underreported datasets, DAMS enhanced robustness to missing data, and timing-aware RL 
advanced decision-making under uncertainty. These contributions underscore the importance 
of addressing distributional drift, incomplete supervision, and decision timing simultaneously, 
rather than in isolation. 

Nevertheless, limitations remain. Reinforcement learning experiments were conducted 
in simulated environments and require validation in real-world clinical workflows. PU 
learning depends on stable assumptions about labeling frequency, which may vary across 
regions. Similarly, DAMS was validated under artificially induced missingness and should be 
further tested on naturally occurring data. 

In conclusion, this study highlights the need for reliability-centered evaluation and 
methodological design in clinical ML. The proposed framework not only strengthens the 
scientific understanding of model degradation but also provides actionable tools to build 
models that remain robust, calibrated, and clinically useful. Future research should extend 
these approaches to prospective trials, explore richer cost and missingness models, and 
investigate integration into clinician-in-the-loop systems for safe deployment. 
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