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Abstract: Sports healthcare increasingly relies on intelligent motion analysis to monitor athlete 
performance, identify risky movements, and prevent injuries. This research focuses on athlete motion 
data gathered from wearable sensors, which record multidimensional signals such as acceleration, 
angular velocity, and joint kinematics. The goal of this study is to develop a real-time, interpretable 
motion classification framework that can accurately distinguish biomechanically similar movements, 
like jump versus kick, which earlier models often misclassify. To accomplish this, we propose a hybrid 
approach combining AlexNet for spatial feature extraction, TabNet for attention-based interpretability, 
discrete wavelet transform for time–frequency analysis, and the Lyrebird Optimization Algorithm for 
feature selection. Experiments on the 6G-SDN Sports Motion Dataset demonstrate that the 
framework achieves 98.85% accuracy, 98.60% precision, 98.61% sensitivity, and 98.65% F1-score, 
outperforming CNN-only, TabNet-only, and LSTM baselines by 2.7–4.6%. Interpretability analysis 
highlights ankle angular velocity and knee joint angle as key predictors, aligning with sports medicine 
research on anterior cruciate ligament (ACL) strain and lower-limb injury risk. Overall, the hybrid 
model offers state-of-the-art classification performance while delivering biomechanically meaningful 
insights, proving its value as a real-time healthcare tool for injury prevention, athlete monitoring, and 
rehabilitation support. 

Keywords: AlexNet; Athlete health monitoring; Injury prevention; Lyrebird Optimization Algorithm; 
Motion classification; Sports healthcare; TabNet; Wearable sensors 

1. Introduction 
Sports healthcare increasingly relies on intelligent motion analysis to monitor athlete 

performance, identify risky movement patterns, and prevent injuries. Wearable sensors 
provide continuous, multidimensional data streams including acceleration, joint angles, 
angular velocity, and posture that can be leveraged for data-driven decision support. Prior 
studies have explored a wide range of approaches, from conventional statistical learning (e.g., 
k-nearest neighbors, support vector machines) to deep learning models such as recurrent 
neural networks (RNNs) and convolutional neural networks (CNNs) for activity recognition 
and performance assessment [1]–[5]. While these approaches achieved notable success, 
challenges persist, including sensitivity to noise, insufficient interpretability, computational 
inefficiency, and reduced accuracy when discriminating between biomechanically similar 
actions [6], [7]. 

CNN-based methods, such as AlexNet, excel in extracting spatial representations but 
are limited in processing heterogeneous and tabular sensor data. Conversely, attention-based 
models like TabNet offer improved interpretability and feature selection yet underperform in 
capturing complex spatial–temporal dependencies [8], [9]. Hybrid frameworks have been 
proposed to combine multiple paradigms; however, they often suffer from feature 
redundancy and unstable generalization, particularly when applied to overlapping sports 
motions, such as jump versus kick [10], [11]. Recent advances have focused on multimodal 
fusion of IMU and video data [12], interpretable deep learning architectures for biomechanics 
[13], explainable AI for athlete monitoring [14], and lightweight deployment strategies 
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optimized for edge devices [15], [16]. These works highlight the need for models that balance 
accuracy, interpretability, and computational efficiency to ensure practical adoption in 
healthcare contexts. 

The research problem addressed in this paper is how to develop a real-time and accurate 
motion analysis framework that can overcome these limitations, specifically by improving 
robustness in distinguishing biomechanically similar movements, while ensuring healthcare 
applicability for injury prevention and athlete monitoring. We hypothesize that a hybrid 
framework integrating CNN spatial features, TabNet attention-based feature processing, and 
Lyrebird Optimization Algorithm (LOA)-based feature selection, augmented with wavelet-
based time–frequency representation, will achieve state-of-the-art accuracy while maintaining 
interpretability and computational efficiency. 

The contributions of this study are as follows: 
1. Development of a hybrid AlexNet–TabNet framework enhanced with LOA for feature 

selection and wavelet-based representation; 
2. Empirical evaluation on the 6G-SDN Sports Motion Dataset with wearable IMU data, 

achieving state-of-the-art performance; 
3. Demonstration of the framework’s utility for healthcare applications, particularly in 

injury prevention and athlete health monitoring; 
4. Comprehensive comparison against baseline models (LSTM, CNN-only, TabNet-only), 

highlighting the advantages of the proposed hybrid approach. 
The remainder of the paper is organized as follows. Section 2 reviews related work. 

Section 3 describes the proposed methodology, including data preprocessing, feature 
extraction, and model design. Section 4 presents experimental results and discussion. Section 
5 concludes with implications for sports healthcare and directions for future research. 

2. Related Work 
Sports motion analysis has been extensively studied across the disciplines of computer 

vision, machine learning, and healthcare due to its potential to facilitate athlete monitoring 
and injury prevention. Early research primarily employed classical machine learning 
techniques such as k-nearest neighbors, decision trees, and support vector machines for 
activity recognition [17], [2]. While these methods offered computational simplicity, they were 
limited in robustness to noise, failed to capture complex multi-joint dynamics adequately, and 
lacked interpretability in clinical contexts. 

The advent of deep learning has led to significant advancements. Convolutional neural 
networks (CNNs), exemplified by AlexNet, have demonstrated strong capabilities in 
extracting spatial features from motion signals and visual inputs [3], [4]. Sequential 
architectures such as recurrent neural networks (RNNs) and long short-term memory (LSTM) 
networks have improved temporal pattern recognition but encountered issues related to 
vanishing gradients, high computational demands, and scalability complications when 
processing high-frequency sensor data [5]. More recently, transformer-based architectures 
have achieved state-of-the-art performance in modeling long-range dependencies [1], [2]. 
Nevertheless, their limited interpretability and computational requirements restrict their 
applicability in healthcare settings where transparency and real-time responsiveness are 
paramount [6], [7]. 

Complementary to these developments, attention-based methods such as TabNet have 
emerged as promising alternatives for handling tabular and heterogeneous data [8], [9]. 
TabNet offers interpretability through feature-level attention masks, allowing practitioners to 
understand the model's decisions, an essential feature for healthcare adoption. However, 
TabNet alone lacks the capacity to capture the spatial structures inherent in sports motions, 
thus limiting its standalone effectiveness. 

Hybrid frameworks have been explored to combine deep learning with feature 
engineering and optimization techniques. Discrete wavelet transforms (DWT) have been 
utilized to generate time–frequency representations of motion data, while metaheuristic 
optimization algorithms, such as genetic algorithms and particle swarm optimization, have 
been applied for feature selection [10]. Although these approaches have improved accuracy, 
they often introduced redundancy within the feature space and faced challenges in 
generalizing across diverse and overlapping movements [12]. Moreover, prior research rarely 
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addresses the fine-grained classification of biomechanically similar actions (e.g., jump versus 
kick), which is highly relevant to injury risk assessment in sports medicine [13], [14]. 

Several key gaps remain evident within this body of work. CNNs excel in spatial 
representation but are insufficient for handling multimodal sensor data; TabNet enhances 
interpretability but does not model spatial–temporal dynamics; optimization-based feature 
selection can be unstable in high-dimensional scenarios; and critically, few studies explicitly 
link sports motion recognition with healthcare outcomes such as injury prevention, load 
management, or rehabilitation monitoring [15], [16]. These gaps highlight the need for an 
integrated framework that strikes a balance between accuracy, interpretability, and efficiency, 
while maintaining direct relevance to healthcare. 

Motivated by these considerations, the present study proposes a hybrid framework that 
integrates CNNs (AlexNet) for spatial feature extraction, TabNet for interpretable tabular 
data processing, wavelet transforms for time–frequency representation, and the Lyrebird 
Optimization Algorithm (LOA) for feature selection. Unlike previous methodologies, this 
approach aims to deliver state-of-the-art classification performance while providing 
biomechanically interpretable outputs that can inform sports healthcare practices. The 
detailed methodology is elaborated in Section 3. 

3. Proposed Method 
Building on the limitations identified in prior approaches, this section presents the 

proposed hybrid framework designed to deliver accurate, efficient, and interpretable sports 
motion classification with direct healthcare relevance. The framework integrates four 
complementary components: (i) AlexNet for spatial feature extraction, (ii) TabNet for 
interpretable tabular processing, (iii) discrete wavelet transform (DWT) for robust time–
frequency representation, and (iv) the Lyrebird Optimization Algorithm (LOA) for feature 
selection. The overall workflow is shown in Algorithm 1. 

3.1. Algorithm Description 
The workflow of the proposed hybrid model is summarized in Algorithm 1. Raw motion 

signals are first preprocessed to remove outliers and normalized to zero mean and unit 
variance. Time–frequency features are extracted using DWT, followed by feature selection 
using LOA. AlexNet processes spatial representations from multi-channel signals, while 
TabNet processes structured tabular features. Their embeddings are fused via a weighted 
coefficient, and the final classification is obtained using fully connected layers with cross-
entropy loss. 

 
Algorithm 1. Hybrid AlexNet–TabNet with LOA for Sports Motion Analysis 
INPUT: Wearable sensor data X = {acceleration, angular velocity, joint angles, posture} 
OUTPUT: Classified sports motions with injury risk indicators 
1: Preprocess input signals: remove outliers, impute missing data, normalize to zero mean and 

unit variance; 
2: Apply DWT to obtain multi-resolution features; 
3: Initialize LOA population with random feature subsets; 
4: For each candidate solution: 

a. Evaluate subset with cross-validation accuracy; 
b. Update solution using LOA position-update rules; 

5: Select optimal feature subset 𝑆∗; 
6: Train AlexNet on spatial features → output embeddings 𝑓"##; 
7: Train TabNet on tabular features → output embeddings 𝑓$%&; 
8: Fuse embeddings: 𝑓'𝑢𝑠𝑖𝑜𝑛 = 𝜆𝑓"𝑛𝑛 + (1− 𝜆)𝑓$%&; 
9: Classify using fully connected layers with cross-entropy loss; 
10: Output class label and performance metrics (accuracy, precision, sensitivity). 

3.2. Mathematical Formulation 
The wavelet transform decomposes motion signals into time–frequency representations: 

𝑾(𝒂, 𝒃) = 	
𝟏
√𝒂

0 𝒙(𝒕)𝝍
(

)(
4
𝒕 − 𝒃
𝒂 6𝒅𝒕, (1) 



Journal of Machine Intelligence in Healthcare 2025 (August), Vol. 1, No. 2, Hossain and Bashir.  58 of 66 
 

 

where 𝑎 and 𝑏 represent scale and translation parameters, and 𝜓 is the mother wavelet. Eq. 
(1) enables capturing motion features at multiple resolutions. 

The LOA selects features by maximizing accuracy and minimizing redundancy: 

𝑭(𝑺) = 	𝜶 ∙ 𝑨𝒄𝒄(𝑺) − 𝜷 ∙
|𝑺|
|𝑭|	, (2) 

where 𝑆 is the selected feature subset, |𝑆| its size, and |𝐹| the full feature set. 
The fused embedding is represented as: 

𝒇𝒇𝒖𝒔𝒊𝒐𝒏 = 𝝀𝒇𝒄𝒏𝒏 + (𝟏− 𝝀)𝒇𝒕𝒂𝒃 (3) 

Finally, the hybrid classifier is trained using cross-entropy loss: 

𝑳 = −E𝒚𝒊	𝐥𝐨𝐠	𝒚J𝒊

𝑵

𝒊1𝟏

	, (4) 

where 𝑦3 and 	𝑦L3 denote true and predicted labels. 

3.3. Hyperparameter Settings 
Hyperparameters were determined via grid search and empirical tuning. Table 1 

summarizes the final configuration. Learning rate was initialized at 0.001 and decayed by 0.1 
with a patience of 5 epochs. Training used SGD (momentum = 0.9, weight decay = 1e-4). 
Early stopping with patience = 10 prevented overfitting, with a maximum of 100 epochs. 
Dropout of 0.5 was applied after fusion and fully connected layers. Fusion coefficient λ was 
initialized at 0.6 and adaptively updated during training. Daubechies-4 wavelets were chosen 
after comparison with Haar and Symlet. LOA used a population size of 30 and 100 iterations, 
typically converging within 70 iterations. 

Table 1. Hyperparameter configuration of the proposed framework. 

Parameter Value Notes 
Learning rate 0.001 (decay ×0.1) Reduced on plateau with patience = 5 epochs 

Optimizer SGD (momentum = 0.9, wd=1e-4) Ensures stable convergence 
Batch size 64 Empirically optimal for GPU memory and stability 

Number of epochs Max 100 (early stopping=10) Patience = 10, prevents overfitting 
Dropout rate 0.5 Applied after fusion and FC layers 

Fusion coefficient (λ) 0.6 (adaptive) Initialized at 0.6, updated by backpropagation 
Wavelet function Daubechies-4 Outperformed Haar and Symlet in capturing short/long motion features 

LOA population size 30 Balanced exploration vs exploitation 
LOA iterations 100 Converged within ~70 iterations 

3.4. Justification of Method Selection 
The selection of AlexNet, TabNet, and LOA is deliberate. AlexNet is computationally 

efficient and effective for capturing spatial representations from multichannel motion signals, 
suitable for real-time healthcare applications where low latency is critical. TabNet provides 
interpretability through attention masks, enabling the identification of key motion features 
that contribute to classification decisions, essential for sports healthcare, where explainability 
supports clinical trust. LOA was chosen over conventional feature selection methods such as 
particle swarm optimization and genetic algorithms because of its ability to balance 
exploration and exploitation, improving convergence and stability in high-dimensional feature 
spaces. The combination of these three components creates a framework that is not only 
accurate but also interpretable and efficient, directly addressing the gaps of previous works in 
terms of feature redundancy, limited interpretability, and weak links to healthcare outcomes. 

4. Results and Discussion 
This section presents the experimental evaluation of the proposed hybrid AlexNet–

TabNet framework with LOA feature selection. Results are reported in terms of quantitative 
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performance, robustness across classes, interpretability, and comparative analysis with 
baseline models. 

4.1. Experimental Environment 
All experiments were conducted on a workstation with an Intel Core i9-12900K CPU, 

64 GB RAM, and an NVIDIA RTX 3090 GPU (24 GB VRAM), running Ubuntu 22.04 LTS. 
The framework was implemented in Python 3.10 using PyTorch 2.0 for deep learning 
modules, Scikit-learn for evaluation metrics, and PyWavelets for wavelet feature extraction. 

4.2. Dataset and Initial Analysis 
We employed the 6G-SDN Sports Motion Dataset, which contains IMU signals 

collected from ankle, knee, and hip joints of 15 athletes. The dataset comprises 12,000 
samples evenly distributed across four classes: sprint, dribble, jump, and kick. Table 2 
summarizes the class distribution, confirming that the dataset is balanced and suitable for fair 
evaluation.  

Table 2. Distribution of motion samples. 

Class Sample Percentage (%) 
Sprint 3,200 26.7 

Dribble 2,800 23.3 
Jump 3,000 25.0 
Kick 3,000 25.0 
Total 12,000 100.0 

4.3. Evaluation Metrics 
Performance was assessed using accuracy, precision, sensitivity (recall), F1-score, and 

Cohen’s Kappa coefficient, alongside False Positive Rate (FPR) and False Negative Rate 
(FNR). Metrics were defined as Eq. (5-8): 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵+ 𝑭𝑵 (5) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷	
(6) 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒇𝒊𝒕𝒚 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵	
(7) 

𝑭𝟏 = 𝟐 ∙
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∙ 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒇𝒊𝒕𝒚
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒇𝒊𝒕𝒚	 (8) 

These metrics collectively ensure balanced evaluation of model robustness across classes. 

4.4. Quantitative Results 
The hybrid AlexNet–TabNet model with LOA demonstrated exceptional performance, 

achieving an overall accuracy of 98.85%, precision of 98.60%, sensitivity of 98.61%, F1-score 
of 98.60%, and a Kappa coefficient of 0.9842. These metrics reflect balanced classification 
performance with minimal bias between positive and negative classes (Fig. 2). The high Kappa 
value underscores the model's strong alignment with the ground truth, highlighting its 
robustness. 
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Figure 2. Performance metrics (Accuracy, Precision, Sensitivity, F1, Kappa). 

False negatives were rare, with an average false negative rate (FNR) of 0.0036, indicating 
the model missed very few positive samples. Conversely, the false positive rate (FPR) was 
higher at 0.0139, reflecting a tendency to misclassify negative instances as positives (Fig. 3). 
Although both rates are low overall, the discrepancy between FNR and FPR implies the 
system leans slightly more towards sensitivity. In healthcare, this bias is generally 
advantageous, as identifying potential risks is preferable to disregarding them. Nevertheless, 
excessive false positives may undermine trust in real-world applications, where repeated alerts 
could overwhelm athletes and coaches. 

 
Figure 3. FNR and FPR values for the proposed model. 

The quantitative results raise essential methodological concerns. Achieving over 98% 
metrics is impressive, but may lead to skepticism about overfitting or data leakage. Training 
and validation curves (see Section 4.6) indicate mild overfitting, but it’s crucial to clarify the 
data split strategy. If samples from the same athletes are included in both training and test 
sets, accuracy might be inflated due to inter-subject similarities. Utilizing a subject-
independent validation method, like leave-one-athlete-out cross-validation, would provide 
more robust evidence of generalizability. 

From a methodological perspective, these findings support the initial hypothesis: by 
combining CNN spatial features (AlexNet), attention-based tabular learning (TabNet), and 
efficient feature selection (LOA), we can boost classification performance while keeping 
things balanced across different classes. That said, the slightly higher FPR suggests there's 
room for improvement through threshold adjustments or cost-sensitive learning to lower 
false positives without compromising accuracy sensitivity. 

4.5. Confusion Matrix 
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Fig. 4 shows the confusion matrix, which gives a detailed look at how well the model 
classifies each type of movement. Overall, the model did a great job of identifying most 
instances correctly, with nearly perfect recognition in Dribble (448 out of 450) and Sprint 
(305 out of 306), both achieving over 99.5% accuracy. This suggests that the hybrid AlexNet-
TabNet-LOA framework can reliably capture actions with unique movement patterns. 

 
Figure 4. Confusion matrix of the proposed model. 

However, the model struggled a bit with Jump and Kick, correctly classifying 234 out of 
240 Jump samples and 215 out of 220 Kick samples, but misclassifying 6 Jump samples as 
Kick and 5 Kick samples as Sprint. The mistakes mostly happened with movements that share 
similar biomechanical characteristics, like strong vertical acceleration and similar take-off 
phases. This shows that using IMU-only input has some limitations, as subtle differences in 
joint angles may not be accurately represented in the extracted features. 

From a sports healthcare perspective, these results present two principal implications. 
Firstly, the system exhibits high reliability in identifying definitive movements (Dribble and 
Sprint), thus rendering it suitable for routine monitoring of athletic performance. Secondly, 
although the error rates in Jump and Kick are minimal (<3%), such misclassifications could 
bear practical significance. For example, mislabeling a Jump as a Kick may obscure the 
recognition of repetitive jump loading, an important risk factor for knee injuries such as 
anterior cruciate ligament (ACL) strain. Consequently, although the framework achieves a 
strong baseline accuracy, further refinement is necessary to ensure robustness in 
differentiating biomechanically similar actions. 

4.5. Training and Validation Behavior 
The learning process of our hybrid model is illustrated in Fig. 5. We observe that the 

training accuracy rises quickly, reaching nearly 1.00 within just 10 epochs, while the validation 
accuracy gently settles around 0.95, indicating that the model learns very rapidly. The loss 
curves continued to decrease steadily, with final training and validation losses of around 0.40 
and 0.50, respectively. 

Although both curves remain close, a small but steady gap persists between training and 
validation performance, suggesting mild overfitting. This happens because the model fits the 
training data almost flawlessly, but the validation set doesn't fit very well. This highlights the 
importance of considering additional regularization techniques or more substantial 
biomechanical data augmentation to enhance the model’s robustness. 

From a healthcare perspective, these results are quite promising, as the validation 
accuracy remains consistently high, indicating the system’s potential for reliable athlete 
monitoring. However, the slight overfitting suggests that the model might be too finely tuned 
to the training data, which could affect its performance with new athletes. To ensure it works 
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well in real-world situations, using subject-independent cross-validation and expanding the 
dataset will be crucial to verify its generalization. 

 

 
Figure 5. Training and validation behavior of the proposed hybrid model: (a) accuracy curves 

showing rapid convergence with stable generalization, and (b) loss curves indicating effective learning 
with only mild overfitting. 

4.7. Precision, Recall, and ROC Analysis 
The precision and recall curves shown in Fig. 6(a) demonstrate precise performance 

across all four classes. Dribble and sprint stood out with the highest average precision (AP = 
0.9995 and 0.9999, respectively), reflecting nearly perfect detection. Kick and jump also 
performed very well (AP = 0.9973 and 0.9944), although the slight difference underscores 
the difficulty in distinguishing biomechanically similar movements. 
 

  
Figure 6. (a) Precision–recall curves and (b) ROC curves for the four action classes. The proposed 

hybrid model achieves near-perfect discrimination, with dribble and sprint showing the highest 
AP/AUC and jump–kick slightly lower yet still outstanding, consistent with their biomechanical 

similarity. 

As illustrated in Fig. 6(b), the receiver operating characteristic (ROC) curves corroborate 
these findings, with all categories exhibiting Area Under the Curve (AUC) values exceeding 
0.996. The sprint and dribble categories demonstrated the highest performance (AUC = 
0.99995 and 0.99962), whereas the kick and jump categories followed closely behind (AUC = 
0.99941 and 0.9961). These results highlight the robust discriminative capability of the 
proposed hybrid model, confirming its effectiveness in generalizing across diverse action 
classes. 

These results confirm that the proposed model is reliable for sports monitoring 
applications, where minimizing false negatives is crucial for injury prevention. However, the 
ongoing misclassification between jump and kick suggests that incorporating additional 
feature modalities, such as electromyography (EMG) or kinematic signals, may further 
improve the system's robustness in fine-grained motion discrimination. 

4.8. Feature Importance Analysis 
Fig. 7 summarizes the feature importance derived from the proposed hybrid model using 

TabNet attention. The analysis consistently highlights ankle angular velocity and knee joint 
angle as the most influential predictors of classification results. These findings align with well-
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established sports medicine evidence linking ankle angular dynamics and knee kinematics to 
anterior cruciate ligament (ACL) strain and lower-limb injury risk. Beyond improving 
accuracy, this result enhances the clinical interpretability of our framework, allowing 
practitioners to focus on monitoring these variables to enable early intervention, such as load 
management or technique correction.  

 

 
Figure 7. Feature importance derived from TabNet attention. Ankle angular velocity and knee joint 
angle emerge as the dominant predictors, in line with sports medicine evidence on ACL and lower 

limb injury risk. Importance values are normalized; higher scores indicate stronger model 
contribution (not causality). 

We note that attention-based importance reflects the model's contribution, rather than 
its causality. To ensure robustness, we assessed the stability of importance through resampling 
and observed consistent rankings across different folds. Future work will extend this analysis 
to per-class importance (e.g., jump vs. kick) and incorporate SHAP-based attributions to 
triangulate explanations further. 

4.9. Comparative Evaluation 
Fig. 8 presents the comparative performance of the proposed hybrid AlexNet–TabNet 

with LOA against three baseline models: CNN-only, TabNet-only, and LSTM. The hybrid 
framework consistently outperforms all baselines across the four evaluation metrics, accuracy, 
precision, sensitivity, and F1-score. Specifically, it achieves 98.85% accuracy, 98.60% 
precision, 98.61% sensitivity, and 98.65% F1-score, representing an absolute improvement of 
2.7–4.6% over the strongest baseline. 

 

 
Figure 8. Comparative evaluation of CNN-only, TabNet-only, LSTM, and the proposed hybrid 

AlexNet–TabNet with LOA across four metrics. 
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The balanced gains across metrics highlight that the hybrid model does not sacrifice 
precision for sensitivity or vice versa, which is particularly critical in healthcare applications 
where both false negatives (missed risky movements) and false positives (unnecessary alerts) 
can have significant consequences. The observed improvements can be attributed to the 
complementary strengths of the integrated components: AlexNet excels in extracting spatial 
features, TabNet contributes interpretable feature selection from sensor data, and LOA 
ensures compact representations that mitigate overfitting. 

Compared to the Transformer-Based methods outlined by Zhu et al. [1], the proposed 
framework achieves statistically similar or better accuracy while also reducing inference 
latency to approximately 28 ms per sample. This dual advantage ensures that the model is 
both methodologically strong and computationally efficient. Beyond technical effectiveness, 
such responsiveness is essential in sports healthcare settings, where real-time detection of 
abnormal movement patterns can provide immediate feedback to athletes and coaches, 
support early intervention efforts, and ultimately help prevent injuries.  

Overall, the proposed hybrid framework acts as a bridge between cutting-edge AI 
performance and healthcare applications, offering not only advancements in motion 
recognition but also clinically meaningful outputs that directly support athlete health 
monitoring and injury prevention. 

4.10. Discussion 
The experimental results confirm the main hypothesis: combining CNN-based spatial 

feature extraction, TabNet’s attention-driven interpretability, and LOA-based feature 
selection significantly improves classification accuracy and generalization compared to single-
architecture baselines. The hybrid framework consistently outperforms others across all 
evaluation metrics and achieves low inference latency, a crucial requirement for real-time 
deployment. This demonstrates that integrating complementary architectures into a 
lightweight design provides both methodological and practical benefits. 

A key limitation is the residual confusion between jump and kick classes, which reflects 
their inherent biomechanical similarity. Both movements share take-off and leg-extension 
dynamics, making them hard to distinguish using only visual and kinematic features. Although 
the misclassification rate is relatively small (<3%), such errors matter in healthcare settings. 
Richer biomechanical data, such as electromyography (EMG) or ground reaction force 
(GRF), could provide additional discriminative power by capturing neuromuscular signals 
that differentiate similar actions. Moreover, enhancing robustness against noisy data and 
validating the model across more diverse populations are necessary steps before it can be 
considered universally applicable. 

Importantly, the interpretability offered by TabNet attention enhances the 
trustworthiness of the framework. The model consistently identified ankle angular velocity 
and knee joint angle as main predictors, aligning with established sports medicine evidence 
on anterior cruciate ligament (ACL) strain and lower-limb injury risk. This alignment between 
machine-derived feature importance and clinical knowledge highlights the system’s potential 
beyond just classification accuracy. In practice, repeated detection of abnormal ankle angular 
velocity could serve as an early warning for overload or improper technique, enabling 
preventive measures. Similarly, ongoing monitoring of knee and ankle kinematics could 
support rehabilitation tracking after injury. 

Overall, these findings demonstrate that the proposed hybrid framework not only 
delivers state-of-the-art performance but also produces biomechanically interpretable outputs 
with direct relevance to healthcare. While future work should focus on improving cross-
population generalization and multimodal data integration, the system demonstrates strong 
potential as a real-time tool for athlete monitoring, injury prevention, and sports healthcare 
support. 

6. Conclusions 
This study proposes a hybrid AlexNet–TabNet architecture enhanced with discrete 

wavelet transforms (DWT) and the Lyrebird Optimization Algorithm (LOA) for feature 
selection, to address the challenge of accurate and interpretable sports motion classification. 
The framework achieved 98.85% accuracy, 98.60% precision, 98.61% sensitivity, and 98.65% 
F1-score, consistently outperforming CNN-only, TabNet-only, and LSTM baselines by 2.7–
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4.6%. These results validate the hypothesis that integrating spatial, tabular, and optimization-
driven components yields superior classification performance while maintaining 
interpretability. 

The synthesis of findings highlights that each component plays a complementary role: 
CNNs capture spatial dynamics from motion signals, TabNet provides attention-based 
interpretability, and LOA ensures compact feature representations that mitigate redundancy 
and overfitting. Importantly, interpretability analysis revealed that ankle angular velocity and 
knee joint angle were the most influential predictors, aligning with established sports medicine 
literature on ACL strain and lower-limb injury risk. This reinforces the healthcare relevance 
of the framework by linking machine-derived insights to biomechanical indicators of injury 
risk. 

The implications of this research extend beyond classification accuracy. By enabling real-
time (~28 ms per sample) and interpretable monitoring of athlete movements, the system 
provides practical value in injury prevention, rehabilitation tracking, and performance 
optimization. Its ability to highlight clinically meaningful features enhances trust and potential 
adoption in sports medicine contexts. 

Nonetheless, limitations remain. Misclassification between jump and kick reflects 
inherent biomechanical similarities and signals the need for richer modalities such as 
electromyography (EMG) or ground reaction force (GRF). Furthermore, validation on larger 
and more diverse athlete populations, as well as under noisy, real-world conditions, is essential 
for ensuring robustness. Future work will explore multimodal data fusion, per-class 
interpretability analyses, and deployment-oriented studies to advance the practical impact of 
the framework. 
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