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Abstract: This study investigates the application of Reinforcement Learning (RL) algorithms,
specifically Q-learning and Deep Q-Network (DQN), for autonomous robot navigation in dynamic
and uncertain environments. The main problem addressed is the limitation of traditional rule-based
control systems in handling real-time environmental changes, including moving obstacles, varying
terrains, and inconsistent sensor conditions. The research aims to evaluate the effectiveness of RL
algorithms in generating optimal navigation paths, minimizing collision risks, and enhancing the robot’s
adaptability to environmental variations. An experimental simulation-based approach was employed
using platforms such as Gazebo, Robot Operating System (ROS), and Python-based simulators. The
robot was trained through multiple interaction episodes, with state spaces including position, velocity,
and obstacle distance, and a reward function designed to encourage safe, efficient, and goal-oriented
navigation. Experimental results demonstrate that DQN significantly outperforms Q-learning,
achieving shorter average path lengths (10.2 m vs. 12.5 m), lower collision rates (7% vs. 15%), faster
convergence (180 vs. 350 episodes), and higher cumulative rewards (315 vs. 210). DQN’s learning
curves are smoother and more stable, while Q-learning exhibits high fluctuations due to limited
generalization. These findings confirm that DQN provides more efficient, safe, and adaptive navigation
and holds substantial potential for next-generation autonomous robots in complex environments.
Further integration with strategies such as curriculum learning and multi-agent coordination can
enhance scalability and overall robotic system performance.
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1. Introduction

Mobile robots have become essential components in various industrial and public service
applications due to their ability to operate autonomously in complex and dynamic
environments . Such environments pose significant challenges, including layout changes, the
presence of moving obstacles, and variations in external conditions such as lighting or weather
. In this context, navigation and obstacle avoidance are fundamental aspects to ensure the
safety and efficiency of robot operations .

Traditional rule-based control systems are generally designed for predetermined
conditions, making them difficult to adapt to unexpected environmental changes .When faced
with uncertainty or dynamic disturbances, these systems often fail to maintain optimal
performance due to limited flexibility and real-time adaptability . Therefore, adaptive learning-
based approaches have been increasingly developed to enhance robot autonomy in complex

real-wotld conditions .
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The development of Reinforcement Learning (RL) has opened new opportunities for
robotic systems to learn through direct interaction with their environments and to optimize
behavior based on feedback in the form of rewards or penalties . This approach enables robots
to achieve greater adaptability without intensive human intervention . In autonomous
navigation applications, RL has proven effective in improving path efficiency and adaptive
obstacle avoidance under changing conditions .

Moreover, the integration of Deep Reinforcement Learning (DRL) and hybrid
algorithms allows robots to learn complex control strategies that account for environmental
uncertainty and dynamics . Several studies have shown that RL. methods also yield significant
results in object manipulation and sensor-based decision-making in dynamic environments .
RL-based approaches not only enhance self-learning capabilities but also reduce the need for
task-specific programming .

However, the implementation of RL in robotics still faces several challenges, including
safety, system stability, and the gap between simulation and real-world implementation (sim-
to-real transfer.) Furthermore, highly complex real-world environments require efficient and
scalable learning models to ensure the reliability of adaptive systems . In the future, the
integration of RL techniques with physics-based models and adaptive control systems is
expected to become a major research direction in the development of next-generation

autonomous robots .

2. Literature Review
Mobile Robotics and Adaptive Control
Fundamental Concepts of Mobile Robot Architecture and Control Systems

Mobile robots are autonomous systems designed to move and operate in complex and
dynamic environments. The control architecture of mobile robots is typically structured to
coordinate subsystems such as navigation, petception, and decision-making simultaneously.
One of the most common approaches is the modular architecture, which enhances system
flexibility and scalability by dividing functions into independent modules.Each module can
be developed, tested, and updated separately without affecting the overall system, facilitating
maintenance and integration of new technologies. This modular approach also allows robots
to be reconfigured according to specific tasks, such as switching between navigation, obstacle
avoidance, and manipulation modes.

In addition to the modular approach, multi-agent architectures have emerged as an
effective solution for mobile robot control .In a multi-agent system, several agents work
autonomously yet cooperatively to accomplish shared goals. Each agent has its own decision-
making algorithm tailored to local environmental conditions. This enables better adaptability
to environmental changes without relying on a centralized controller. Such architecture

improves system reliability and resilience, as the failure of one agent does not disrupt the
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entire robot’s operation. The multi-agent concept has been successfully implemented in
collaborative robots, swarm robotics, and autonomous vehicles.
Limitations of Conventional Control Systems in Changing Environments

Conventional control systems are generally designed based on fixed rule-based logic,
assuming relatively stable environmental conditions. This approach faces limitations in
handling unexpected disturbances or sudden environmental changes. For instance, when
spatial layouts are modified or new obstacles appear, centralized control systems require more
time to recalibrate, leading to delayed responses . This delay can reduce operational efficiency,
particularly in navigation tasks that demand fast and precise reactions.

Moreover, traditional control systems are often constrained by computational resources
such as memory capacity and processing speed. In highly dynamic environments, these
systems struggle to adapt, as every environmental change requires complete reprocessing of
the control model. Consequently, robots may fail to maintain optimal performance when
confronted with conditions different from those in their initial training phase. These
challenges have motivated recent research to focus on implementing adaptive control and
machine learning-based methods in mobile robotics.

Adaptive Approaches in Robotic Control Systems

To overcome these limitations, vatious adaptive approaches have been developed,
including the integration of neural networks and fuzzy logic. These techniques enable control
systems to learn from experience and adjust their responses to environmental disturbances .
Neural networks dynamically map nonlinear relationships between sensor inputs and actuator
outputs, while fuzzy logic enhances decision-making flexibility by handling uncertain or
imprecise data. The combination of both methods improves the system’s ability to adjust
control parameters in real time without significant human intervention.

Beyond learning-based techniques, modern control architectures also adopt open and
reconfigurable frameworks, allowing system structures to be modified according to
environmental conditions and operational goals . This approach ensures high flexibility in
adapting to varying scenarios, such as transitioning from indoor to outdoor environments
with different sensory characteristics. Recent studies highlight that modular hardware-
software frameworks, such as the MODROB framework, significantly simplify the
development, integration, and reusability of mobile robot control systems .

With these advancements, mobile robot control systems have become more efficient,
adaptive, and robust under uncertain environmental conditions. Nevertheless, further
research is required to optimize the integration of adaptive control, autonomous learning, and
multi-agent systems to effectively address real-world complexities.

Reinforcement Learning in Robotics

Fundamentals and Algorithms of Reinforcement Learning
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Reinforcement Learning (RL) is a machine learning approach in which an agent learns
by interacting with its environment to maximize cumulative rewards. The main components
of RL include state, action, reward, and policy . This framework allows the agent to adapt its
behavior based on the experience gained.

Q-learning is a classical value-based algorithm for estimating action values (Q-values)
and iteratively updating the policy. Q-learning is effective in environments with limited state
spaces and has served as the foundation for many RL developments . Its application enables
robots to dynamically adapt to environmental changes, particularly in navigation tasks.

Deep Q-Networks (DQN) extend Q-learning by leveraging deep neural networks to
estimate Q-values in high-dimensional state spaces . With DQN, RL can be applied to robots
with complex sensory inputs, such as cameras or LIDAR. Further studies demonstrate
improved stability and convergence of learning with enhanced DQN algorithms .

RL in Navigation and Obstacle Avoidance

RL has been extensively applied in robot and UAV navigation, including path planning
and obstacle avoidance. Simulations of DQN on Autonomous Aerial Vehicles (AAV) in
cornered environments have demonstrated the ability to reach goals with greater motion
stability [24]. Curriculum learning has been utilized to optimize indoor UAV path planning,
enhancing learning accuracy and efficiency .

Obstacle avoidance is a critical application of RL in robotics. Real-time Q-learning has
been implemented on mobile robots, successfully avoiding dynamic obstacles with high
success rates .Comparative studies of Q-learning and SARSA for UAV path planning in 3D
environments indicate that Q-learning is more effective in tackling navigation challenges .
TLS-DQN and LiDAR-based area decision methods further enhance mobility control in
indoor settings, allowing better adaptation to complex environments .

Moreover, deep RL has been applied for robot path planning in unknown environments,
enabling navigation without pre-existing maps . This approach has proven effective for
autonomous navigation and collision avoidance. Recent research demonstrates performance
improvements through the integration of global and local RL strategies, allowing robots to
plan optimal paths while adaptively avoiding obstacles.

Motion Planning and Integration with Advanced Methods

Reinforcement Learning (RL) has also been significantly applied in robotic motion
planning, particularly for robot arms operating in constrained or dynamic environments. RL-
based trajectory planning algorithms allow robots to improve movement efficiency while
minimizing collision risks . Additionally, DQN has been employed for actuator control in
wireless sensor-actuator networks, accelerating convergence and optimizing energy usage
during motion . Integrating RL with global planning methods, such as waypoint generators,
enables adaptive navigation that accounts for both local and global obstacles , . This hybrid

approach enhances the reliability and adaptability of robots in complex environments.
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The development of RL for modern robots also emphasizes curriculum learning, which
has been shown to accelerate the learning process for complex navigation tasks . The
application of LIDAR sensors allows robots to evaluate mobility more precisely and avoid
obstacles more safely in indoor environments . To expand generalization capabilities, recent
studies demonstrate that RL can be used for robot navigation in previously unknown
environments without requiring additional training . Multi-agent RL approaches enable
several robots to collaborate, improving the effectiveness of missions involving multiple
robotic units . Finally, combining DQN and TLS-DQN in mobility control shows significant

performance improvements for autonomous robots in both indoor and outdoor scenatios .

3. Proposed Method

Research — Algotrithm Simulation

Approach Design Environment

Evaluation Metrics

and Methods Training Process

Figure 1. Research Methodology Flowchart.
Research Approach

This study adopts an experimental approach based on simulation to evaluate the
performance of Reinforcement Learning (RL) algorithms in robot navigation. The
simulation-based approach allows full control over environmental variables and facilitates
observation of the RL agent’s adaptation in various dynamic scenarios without risks to
physical robots. Simulations also support repeated testing and scenario variations to generate
consistent and comprehensive data.

Through this method, the study can systematically assess the effectiveness of adaptive
learning strategies, including the agent’s ability to adjust its behavior under changing
environmental conditions. Moteover, the simulation approach enables performance
comparison between RL and traditional control methods, allowing quantitative analysis of the
impact of machine learning algorithms on robot navigation.

Algorithm Design
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The algorithms employed in this study include Q-learning and Deep Q-Network
(DQN). The state-space encompasses the robot’s position, velocity, and distance to obstacles,
while the action-space defines the possible movement directions, enabling adaptive responses
to the environment. The reward function is designed to encourage safe, efficient, and goal-
directed navigation, considering travel distance, safety, and speed of reaching the target.

This design allows the RL agent to learn an optimal policy through repeated interactions
with the environment. DQN is applied for complex state-spaces and sensor inputs such as
cameras or LiDAR, while Q-learning is used for limited state-space scenarios. Combining
both algorithms enables performance and learning stability comparisons in the context of
robot navigation.

Simulation Environment

The simulation environment is developed using platforms such as Gazebo, Robot
Operating System (ROS), or Python-based simulators, providing realistic representations of
real-wotld conditions. The simulations include dynamic scenarios such as moving obstacles,
varying surfaces, and random environmental changes, enabling the RL agent to navigate
complex environments effectively.

This environment allows evaluation of the robot’s adaptability to diverse conditions
safely and efficiently. Additionally, the simulation facilitates detailed petformance data
collection, which is essential for analyzing algorithm convergence, policy effectiveness, and
comparison with rule-based static controls.

Training Process

The RL agent is trained through multiple episodes of interaction with the simulation
environment. Hach episode provides new experiences that are used to update Q-values and
iteratively improve navigation policies. This process enables the agent to learn optimal
strategies through trial-and-error and feedback from the reward function.

Continuous evaluation is conducted to monitor algorithm convergence and the
effectiveness of the generated policies. This analysis helps identify the strengths and
limitations of each algorithm in navigating dynamic environments while providing a basis for
improving and optimizing the RL agent’s learning strategy.

Evaluation Metrics and Methods

The RL agent’s performance is measured using several indicators, including path
optimality based on shortest distance, collision rate to assess navigation safety, and adaptation
speed to environmental changes. These indicators provide a comprehensive overview of the
effectiveness of the implemented navigation strategy.

Additionally, RL performance is compared with rule-based static control to assess the
advantages of using adaptive learning algorithms. This evaluation allows identification of
significant improvements in robot navigation in terms of both path efficiency and adaptability

to unexpected situations, supporting the development of more reliable robotic systems.
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4. Results and Discussion
Results

The experimental evaluation of Q-learning and Deep Q-Network (DQN) was
conducted in a simulated dynamic environment that emulates real-world conditions, including
moving obstacles, variable terrain, and limited sensor accuracy. The main objectives were to
assess the algorithms’ ability to generate optimal navigation paths, avoid collisions, and adapt
to changing environmental conditions. Both RL algorithms successfully learned policies for
goal-directed navigation, but DQN demonstrated superior performance across all metrics.

Table 1. Performance Metrics of Q-learning and DQN Algorithms.

Metric Q-learning DQN
Average Path Length (m) 12.5 10.2
Collision Rate (%0) 15 7
Convergence Episodes 350 180
Adaptation Time (s) 2.3 1.4
Cumulative Reward (final) 210 315

The table demonstrates that DQN achieves more efficient navigation than Q-learning,
as indicated by the shorter average path length of 10.2 meters compared to 12.5 meters. This
result highligchts DQN’s ability to leverage high-dimensional sensor inputs, enabling better
trajectory planning and avoidance of redundant movements. In practical terms, this efficiency
translates to faster task completion and reduced energy consumption for robotic systems.

Regarding safety and robustness, DQN significantly reduces the collision rate from 15%
to 7%. This improvement reflects the algorithm’s capability to incorporate the reward
function effectively, penalizing unsafe actions and reinforcing cautious navigation behavior.
By continuously evaluating the distance to obstacles and adjusting actions, DQN maintains
safer trajectories even in dynamic and unpredictable environments.

Furthermore, DQN converges much faster, requiring only 180 episodes compared to
350 episodes for Q-learning. Faster convergence indicates higher learning efficiency and
lower computational cost, which is crucial for real-time applications. The higher cumulative
reward achieved by DQN (315 vs. 210) confirms that it balances efficiency, safety, and goal-
directed navigation more effectively than classical Q-learning. Adaptation times also show
DQNs ability to quickly respond to environmental changes, further validating its suitability

for dynamic scenarios.
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Figure 2. Learning Curve and Collision Rate over Training Episodes.

The learning curves in Figure 2 illustrate that DQN rapidly improves its performance
within the first 100 episodes, showing consistent growth in cumulative reward with minimal
fluctuation. Q-learning, by contrast, exhibits slower and more irregular improvement due to
its limited ability to generalize across states. This demonstrates that DQN’s neural network-
based approach allows it to efficiently approximate the Q-values even in high-dimensional
state spaces, resulting in smoother learning trajectories.

The collision rate plot further emphasizes DQN’s effectiveness in dynamic
environments. While Q-learning experiences high collision rates in eatly and mid-training
episodes, DQN maintains a consistently lower collision frequency, demonstrating its
enhanced capability for real-time obstacle avoidance. Together, these graphs confirm that
DOQN not only achieves higher rewards but also ensures safer navigation and faster adaptation
to environmental variations.

Discussion

The experimental results indicate that Deep Q-Network (DQN) outperforms classical
Q-learning in multiple aspects, including path efficiency, safety, learning speed, and
adaptability. The shorter average path length observed for DQN (10.2 meters) compared to
Q-learning (12.5 meters) demonstrates that DQN can generate more optimal navigation
routes by effectively utilizing high-dimensional sensor inputs. This is consistent with the
expectation that neural network function approximators enable better generalization in
complex state spaces, reducing unnecessary movements and improving operational efficiency.

Safety performance, measured by collision rate, shows that DQN achieves a significantly
lower value (7%) than Q-learning (15%). This improvement can be attributed to the design
of the reward function, which penalizes unsafe behavior and encourages safer navigation
strategies. The lower collision rate observed in the learning curve plot supports this
conclusion, indicating that DQN quickly learns to anticipate and avoid obstacles in dynamic
environments. In real-world applications, such reduced collision frequency would directly

translate to lower risk of hardware damage and safer operation in unpredictable settings.
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Regarding learning efficiency, DQN converges in fewer episodes (180) than Q-learning
(350), demonstrating that neural network-based Q-value approximation accelerates policy
optimization. The cumulative reward analysis further reinforces this finding, as DQN
achieves a higher total reward (315 vs. 210), reflecting the algorithm’s balanced approach to
achieving both task efficiency and safety. These results imply that DQN is not only more
effective but also more computationally practical for real-time robotic navigation, as faster
convergence reduces training time and computational resources.

The learning curves and collision rate plots provide additional insight into performance
dynamics. The smoother and steadily increasing reward curve for DQN highlights stable
learning behavior, whereas Q-learning exhibits irregular reward progression due to its limited
ability to generalize across states. This observation aligns with the adaptive capacity of DQN,
which can continuously refine its policy in response to environmental changes. Additionally,
the consistently lower collision rate of DQN across training episodes emphasizes its superior
capability for real-time obstacle avoidance.

The observed results also suggest implications for the design of autonomous robotic
systems. Integrating DQN with curriculum learning and advanced sensing modalities such as
LiDAR can further enhance navigation performance in complex and previously unknown
environments. Moreover, multi-agent coordination using DQN could optimize collective task
execution, reducing collision risk and improving overall mission efficiency. The combination
of trajectory optimization, adaptive learning, and safety-aware reward functions makes DQN

a robust approach for both indoor and outdoor autonomous navigation tasks.

5. Comparison

The comparative analysis between Q-learning and Deep Q-Network (DQN) reveals
significant differences in their capabilities to handle dynamic and uncertain environments in
autonomous robot navigation. Q-learning, as a classical value-based algorithm, is effective in
simpler, low-dimensional state spaces but struggles with scalability and generalization in
complex scenarios. Its learning trajectory exhibits high fluctuations in cumulative reward,
slower convergence, and higher collision rates, reflecting limited adaptability when
encountering unpredicted obstacles or environmental changes. DQN, on the other hand,
integrates deep neural networks to approximate Q-values across high-dimensional sensory
inputs, such as camera and LiIDAR data. This enables smoother learning curves, faster
convergence, and more optimal path planning, as evidenced by shorter average path lengths
and higher cumulative rewards. Furthermore, DQN demonstrates superior safety
performance, maintaining consistently lower collision rates by effectively utilizing reward
functions to penalize unsafe actions and reinforce cautious navigation. The results indicate
that DQN not only outperforms Q-learning in efficiency and safety but also offers better

computational practicality, as it requires fewer training episodes to reach optimal policies.
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Overall, the comparison underscores that neural network-based RL approaches are essential

for adaptive, reliable, and scalable autonomous navigation in real-world scenarios.

6. Conclusions

This study confirms that Deep Q-Network (DQN) provides substantial advantages over
classical Q-learning in autonomous robot navigation under dynamic and uncertain conditions.
DQN achieves shorter average path lengths, higher cumulative rewards, faster convergence,
and lower collision rates, demonstrating its ability to generate efficient, safe, and adaptive
navigation strategies. By leveraging high-dimensional sensory inputs and reward-driven policy
optimization, DQN enables robots to generalize across states, respond rapidly to
environmental changes, and maintain robust performance even in previously unknown
scenarios. These results highlight the practical applicability of DQN in both indoor and
outdoor navigation tasks, making it a suitable choice for next-generation mobile robots
requiring real-time adaptability.

The findings further suggest that integrating DQN with additional advanced strategies,
such as curriculum learning, multi-agent coordination, and hybrid control frameworks, can
enhance scalability, efficiency, and resilience in multi-robot systems. Future research may
focus on sim-to-real transfer, safety-aware reward shaping, and real-world deployment of
DQN-based navigation systems to bridge the gap between simulation results and operational
performance. By combining adaptive learning with robust sensing and control architectures,
autonomous robots can achieve higher operational efficiency, reduced collision risk, and
improved mission success rates, paving the way for more intelligent and reliable robotic

applications in complex environments.
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